This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of drngmul0or as of 25-Jun-2025. (Contributed by NM, 8-Oct-2014) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drngmuleq0.b | |- B = ( Base ` R ) |
|
| drngmuleq0.o | |- .0. = ( 0g ` R ) |
||
| drngmuleq0.t | |- .x. = ( .r ` R ) |
||
| drngmuleq0.r | |- ( ph -> R e. DivRing ) |
||
| drngmuleq0.x | |- ( ph -> X e. B ) |
||
| drngmuleq0.y | |- ( ph -> Y e. B ) |
||
| Assertion | drngmul0orOLD | |- ( ph -> ( ( X .x. Y ) = .0. <-> ( X = .0. \/ Y = .0. ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngmuleq0.b | |- B = ( Base ` R ) |
|
| 2 | drngmuleq0.o | |- .0. = ( 0g ` R ) |
|
| 3 | drngmuleq0.t | |- .x. = ( .r ` R ) |
|
| 4 | drngmuleq0.r | |- ( ph -> R e. DivRing ) |
|
| 5 | drngmuleq0.x | |- ( ph -> X e. B ) |
|
| 6 | drngmuleq0.y | |- ( ph -> Y e. B ) |
|
| 7 | df-ne | |- ( X =/= .0. <-> -. X = .0. ) |
|
| 8 | oveq2 | |- ( ( X .x. Y ) = .0. -> ( ( ( invr ` R ) ` X ) .x. ( X .x. Y ) ) = ( ( ( invr ` R ) ` X ) .x. .0. ) ) |
|
| 9 | 8 | ad2antlr | |- ( ( ( ph /\ ( X .x. Y ) = .0. ) /\ X =/= .0. ) -> ( ( ( invr ` R ) ` X ) .x. ( X .x. Y ) ) = ( ( ( invr ` R ) ` X ) .x. .0. ) ) |
| 10 | 4 | adantr | |- ( ( ph /\ X =/= .0. ) -> R e. DivRing ) |
| 11 | 5 | adantr | |- ( ( ph /\ X =/= .0. ) -> X e. B ) |
| 12 | simpr | |- ( ( ph /\ X =/= .0. ) -> X =/= .0. ) |
|
| 13 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 14 | eqid | |- ( invr ` R ) = ( invr ` R ) |
|
| 15 | 1 2 3 13 14 | drnginvrl | |- ( ( R e. DivRing /\ X e. B /\ X =/= .0. ) -> ( ( ( invr ` R ) ` X ) .x. X ) = ( 1r ` R ) ) |
| 16 | 10 11 12 15 | syl3anc | |- ( ( ph /\ X =/= .0. ) -> ( ( ( invr ` R ) ` X ) .x. X ) = ( 1r ` R ) ) |
| 17 | 16 | oveq1d | |- ( ( ph /\ X =/= .0. ) -> ( ( ( ( invr ` R ) ` X ) .x. X ) .x. Y ) = ( ( 1r ` R ) .x. Y ) ) |
| 18 | drngring | |- ( R e. DivRing -> R e. Ring ) |
|
| 19 | 4 18 | syl | |- ( ph -> R e. Ring ) |
| 20 | 19 | adantr | |- ( ( ph /\ X =/= .0. ) -> R e. Ring ) |
| 21 | 1 2 14 | drnginvrcl | |- ( ( R e. DivRing /\ X e. B /\ X =/= .0. ) -> ( ( invr ` R ) ` X ) e. B ) |
| 22 | 10 11 12 21 | syl3anc | |- ( ( ph /\ X =/= .0. ) -> ( ( invr ` R ) ` X ) e. B ) |
| 23 | 6 | adantr | |- ( ( ph /\ X =/= .0. ) -> Y e. B ) |
| 24 | 1 3 | ringass | |- ( ( R e. Ring /\ ( ( ( invr ` R ) ` X ) e. B /\ X e. B /\ Y e. B ) ) -> ( ( ( ( invr ` R ) ` X ) .x. X ) .x. Y ) = ( ( ( invr ` R ) ` X ) .x. ( X .x. Y ) ) ) |
| 25 | 20 22 11 23 24 | syl13anc | |- ( ( ph /\ X =/= .0. ) -> ( ( ( ( invr ` R ) ` X ) .x. X ) .x. Y ) = ( ( ( invr ` R ) ` X ) .x. ( X .x. Y ) ) ) |
| 26 | 1 3 13 | ringlidm | |- ( ( R e. Ring /\ Y e. B ) -> ( ( 1r ` R ) .x. Y ) = Y ) |
| 27 | 19 6 26 | syl2anc | |- ( ph -> ( ( 1r ` R ) .x. Y ) = Y ) |
| 28 | 27 | adantr | |- ( ( ph /\ X =/= .0. ) -> ( ( 1r ` R ) .x. Y ) = Y ) |
| 29 | 17 25 28 | 3eqtr3d | |- ( ( ph /\ X =/= .0. ) -> ( ( ( invr ` R ) ` X ) .x. ( X .x. Y ) ) = Y ) |
| 30 | 29 | adantlr | |- ( ( ( ph /\ ( X .x. Y ) = .0. ) /\ X =/= .0. ) -> ( ( ( invr ` R ) ` X ) .x. ( X .x. Y ) ) = Y ) |
| 31 | 19 | adantr | |- ( ( ph /\ ( X .x. Y ) = .0. ) -> R e. Ring ) |
| 32 | 31 | adantr | |- ( ( ( ph /\ ( X .x. Y ) = .0. ) /\ X =/= .0. ) -> R e. Ring ) |
| 33 | 22 | adantlr | |- ( ( ( ph /\ ( X .x. Y ) = .0. ) /\ X =/= .0. ) -> ( ( invr ` R ) ` X ) e. B ) |
| 34 | 1 3 2 | ringrz | |- ( ( R e. Ring /\ ( ( invr ` R ) ` X ) e. B ) -> ( ( ( invr ` R ) ` X ) .x. .0. ) = .0. ) |
| 35 | 32 33 34 | syl2anc | |- ( ( ( ph /\ ( X .x. Y ) = .0. ) /\ X =/= .0. ) -> ( ( ( invr ` R ) ` X ) .x. .0. ) = .0. ) |
| 36 | 9 30 35 | 3eqtr3d | |- ( ( ( ph /\ ( X .x. Y ) = .0. ) /\ X =/= .0. ) -> Y = .0. ) |
| 37 | 36 | ex | |- ( ( ph /\ ( X .x. Y ) = .0. ) -> ( X =/= .0. -> Y = .0. ) ) |
| 38 | 7 37 | biimtrrid | |- ( ( ph /\ ( X .x. Y ) = .0. ) -> ( -. X = .0. -> Y = .0. ) ) |
| 39 | 38 | orrd | |- ( ( ph /\ ( X .x. Y ) = .0. ) -> ( X = .0. \/ Y = .0. ) ) |
| 40 | 39 | ex | |- ( ph -> ( ( X .x. Y ) = .0. -> ( X = .0. \/ Y = .0. ) ) ) |
| 41 | 1 3 2 | ringlz | |- ( ( R e. Ring /\ Y e. B ) -> ( .0. .x. Y ) = .0. ) |
| 42 | 19 6 41 | syl2anc | |- ( ph -> ( .0. .x. Y ) = .0. ) |
| 43 | oveq1 | |- ( X = .0. -> ( X .x. Y ) = ( .0. .x. Y ) ) |
|
| 44 | 43 | eqeq1d | |- ( X = .0. -> ( ( X .x. Y ) = .0. <-> ( .0. .x. Y ) = .0. ) ) |
| 45 | 42 44 | syl5ibrcom | |- ( ph -> ( X = .0. -> ( X .x. Y ) = .0. ) ) |
| 46 | 1 3 2 | ringrz | |- ( ( R e. Ring /\ X e. B ) -> ( X .x. .0. ) = .0. ) |
| 47 | 19 5 46 | syl2anc | |- ( ph -> ( X .x. .0. ) = .0. ) |
| 48 | oveq2 | |- ( Y = .0. -> ( X .x. Y ) = ( X .x. .0. ) ) |
|
| 49 | 48 | eqeq1d | |- ( Y = .0. -> ( ( X .x. Y ) = .0. <-> ( X .x. .0. ) = .0. ) ) |
| 50 | 47 49 | syl5ibrcom | |- ( ph -> ( Y = .0. -> ( X .x. Y ) = .0. ) ) |
| 51 | 45 50 | jaod | |- ( ph -> ( ( X = .0. \/ Y = .0. ) -> ( X .x. Y ) = .0. ) ) |
| 52 | 40 51 | impbid | |- ( ph -> ( ( X .x. Y ) = .0. <-> ( X = .0. \/ Y = .0. ) ) ) |