This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A product is zero iff one of its factors is zero. (Contributed by NM, 8-Oct-2014) (Proof shortened by SN, 25-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drngmuleq0.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| drngmuleq0.o | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| drngmuleq0.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| drngmuleq0.r | ⊢ ( 𝜑 → 𝑅 ∈ DivRing ) | ||
| drngmuleq0.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| drngmuleq0.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | drngmul0or | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) = 0 ↔ ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngmuleq0.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | drngmuleq0.o | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | drngmuleq0.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | drngmuleq0.r | ⊢ ( 𝜑 → 𝑅 ∈ DivRing ) | |
| 5 | drngmuleq0.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | drngmuleq0.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | drngdomn | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Domn ) | |
| 8 | 4 7 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Domn ) |
| 9 | 1 3 2 | domneq0 | ⊢ ( ( 𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 · 𝑌 ) = 0 ↔ ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) ) |
| 10 | 8 5 6 9 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) = 0 ↔ ( 𝑋 = 0 ∨ 𝑌 = 0 ) ) ) |