This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of drngmcl as of 25-Jun-2025. The product of two nonzero elements of a division ring is nonzero. (Contributed by NM, 7-Sep-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drngmcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| drngmcl.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| drngmcl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | drngmclOLD | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑌 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑋 · 𝑌 ) ∈ ( 𝐵 ∖ { 0 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngmcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | drngmcl.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | drngmcl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) = ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) | |
| 5 | 1 3 4 | drngmgp | ⊢ ( 𝑅 ∈ DivRing → ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ∈ Grp ) |
| 6 | difss | ⊢ ( 𝐵 ∖ { 0 } ) ⊆ 𝐵 | |
| 7 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 8 | 7 1 | mgpbas | ⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 9 | 4 8 | ressbas2 | ⊢ ( ( 𝐵 ∖ { 0 } ) ⊆ 𝐵 → ( 𝐵 ∖ { 0 } ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) ) |
| 10 | 6 9 | ax-mp | ⊢ ( 𝐵 ∖ { 0 } ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) |
| 11 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 12 | difexg | ⊢ ( 𝐵 ∈ V → ( 𝐵 ∖ { 0 } ) ∈ V ) | |
| 13 | 7 2 | mgpplusg | ⊢ · = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 14 | 4 13 | ressplusg | ⊢ ( ( 𝐵 ∖ { 0 } ) ∈ V → · = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) ) |
| 15 | 11 12 14 | mp2b | ⊢ · = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) |
| 16 | 10 15 | grpcl | ⊢ ( ( ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ∈ Grp ∧ 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑌 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑋 · 𝑌 ) ∈ ( 𝐵 ∖ { 0 } ) ) |
| 17 | 5 16 | syl3an1 | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑌 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑋 · 𝑌 ) ∈ ( 𝐵 ∖ { 0 } ) ) |