This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of drngmcl as of 25-Jun-2025. The product of two nonzero elements of a division ring is nonzero. (Contributed by NM, 7-Sep-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drngmcl.b | |- B = ( Base ` R ) |
|
| drngmcl.t | |- .x. = ( .r ` R ) |
||
| drngmcl.z | |- .0. = ( 0g ` R ) |
||
| Assertion | drngmclOLD | |- ( ( R e. DivRing /\ X e. ( B \ { .0. } ) /\ Y e. ( B \ { .0. } ) ) -> ( X .x. Y ) e. ( B \ { .0. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngmcl.b | |- B = ( Base ` R ) |
|
| 2 | drngmcl.t | |- .x. = ( .r ` R ) |
|
| 3 | drngmcl.z | |- .0. = ( 0g ` R ) |
|
| 4 | eqid | |- ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) = ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) |
|
| 5 | 1 3 4 | drngmgp | |- ( R e. DivRing -> ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) e. Grp ) |
| 6 | difss | |- ( B \ { .0. } ) C_ B |
|
| 7 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 8 | 7 1 | mgpbas | |- B = ( Base ` ( mulGrp ` R ) ) |
| 9 | 4 8 | ressbas2 | |- ( ( B \ { .0. } ) C_ B -> ( B \ { .0. } ) = ( Base ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) ) |
| 10 | 6 9 | ax-mp | |- ( B \ { .0. } ) = ( Base ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) |
| 11 | 1 | fvexi | |- B e. _V |
| 12 | difexg | |- ( B e. _V -> ( B \ { .0. } ) e. _V ) |
|
| 13 | 7 2 | mgpplusg | |- .x. = ( +g ` ( mulGrp ` R ) ) |
| 14 | 4 13 | ressplusg | |- ( ( B \ { .0. } ) e. _V -> .x. = ( +g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) ) |
| 15 | 11 12 14 | mp2b | |- .x. = ( +g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) |
| 16 | 10 15 | grpcl | |- ( ( ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) e. Grp /\ X e. ( B \ { .0. } ) /\ Y e. ( B \ { .0. } ) ) -> ( X .x. Y ) e. ( B \ { .0. } ) ) |
| 17 | 5 16 | syl3an1 | |- ( ( R e. DivRing /\ X e. ( B \ { .0. } ) /\ Y e. ( B \ { .0. } ) ) -> ( X .x. Y ) e. ( B \ { .0. } ) ) |