This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division rings are principal ideal. (Contributed by Stefan O'Rear, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | drnglpir | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ LPIR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngring | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) | |
| 5 | 2 3 4 | drngnidl | ⊢ ( 𝑅 ∈ DivRing → ( LIdeal ‘ 𝑅 ) = { { ( 0g ‘ 𝑅 ) } , ( Base ‘ 𝑅 ) } ) |
| 6 | eqid | ⊢ ( LPIdeal ‘ 𝑅 ) = ( LPIdeal ‘ 𝑅 ) | |
| 7 | 6 3 | lpi0 | ⊢ ( 𝑅 ∈ Ring → { ( 0g ‘ 𝑅 ) } ∈ ( LPIdeal ‘ 𝑅 ) ) |
| 8 | 6 2 | lpi1 | ⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) ∈ ( LPIdeal ‘ 𝑅 ) ) |
| 9 | 7 8 | prssd | ⊢ ( 𝑅 ∈ Ring → { { ( 0g ‘ 𝑅 ) } , ( Base ‘ 𝑅 ) } ⊆ ( LPIdeal ‘ 𝑅 ) ) |
| 10 | 1 9 | syl | ⊢ ( 𝑅 ∈ DivRing → { { ( 0g ‘ 𝑅 ) } , ( Base ‘ 𝑅 ) } ⊆ ( LPIdeal ‘ 𝑅 ) ) |
| 11 | 5 10 | eqsstrd | ⊢ ( 𝑅 ∈ DivRing → ( LIdeal ‘ 𝑅 ) ⊆ ( LPIdeal ‘ 𝑅 ) ) |
| 12 | 6 4 | islpir2 | ⊢ ( 𝑅 ∈ LPIR ↔ ( 𝑅 ∈ Ring ∧ ( LIdeal ‘ 𝑅 ) ⊆ ( LPIdeal ‘ 𝑅 ) ) ) |
| 13 | 1 11 12 | sylanbrc | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ LPIR ) |