This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The unit ideal is always principal. (Contributed by Stefan O'Rear, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lpival.p | ⊢ 𝑃 = ( LPIdeal ‘ 𝑅 ) | |
| lpi1.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| Assertion | lpi1 | ⊢ ( 𝑅 ∈ Ring → 𝐵 ∈ 𝑃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpival.p | ⊢ 𝑃 = ( LPIdeal ‘ 𝑅 ) | |
| 2 | lpi1.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 4 | 2 3 | ringidcl | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 5 | eqid | ⊢ ( RSpan ‘ 𝑅 ) = ( RSpan ‘ 𝑅 ) | |
| 6 | 5 2 3 | rsp1 | ⊢ ( 𝑅 ∈ Ring → ( ( RSpan ‘ 𝑅 ) ‘ { ( 1r ‘ 𝑅 ) } ) = 𝐵 ) |
| 7 | 6 | eqcomd | ⊢ ( 𝑅 ∈ Ring → 𝐵 = ( ( RSpan ‘ 𝑅 ) ‘ { ( 1r ‘ 𝑅 ) } ) ) |
| 8 | sneq | ⊢ ( 𝑔 = ( 1r ‘ 𝑅 ) → { 𝑔 } = { ( 1r ‘ 𝑅 ) } ) | |
| 9 | 8 | fveq2d | ⊢ ( 𝑔 = ( 1r ‘ 𝑅 ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) = ( ( RSpan ‘ 𝑅 ) ‘ { ( 1r ‘ 𝑅 ) } ) ) |
| 10 | 9 | rspceeqv | ⊢ ( ( ( 1r ‘ 𝑅 ) ∈ 𝐵 ∧ 𝐵 = ( ( RSpan ‘ 𝑅 ) ‘ { ( 1r ‘ 𝑅 ) } ) ) → ∃ 𝑔 ∈ 𝐵 𝐵 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) ) |
| 11 | 4 7 10 | syl2anc | ⊢ ( 𝑅 ∈ Ring → ∃ 𝑔 ∈ 𝐵 𝐵 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) ) |
| 12 | 1 5 2 | islpidl | ⊢ ( 𝑅 ∈ Ring → ( 𝐵 ∈ 𝑃 ↔ ∃ 𝑔 ∈ 𝐵 𝐵 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) ) ) |
| 13 | 11 12 | mpbird | ⊢ ( 𝑅 ∈ Ring → 𝐵 ∈ 𝑃 ) |