This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division rings are principal ideal. (Contributed by Stefan O'Rear, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | drnglpir | |- ( R e. DivRing -> R e. LPIR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngring | |- ( R e. DivRing -> R e. Ring ) |
|
| 2 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 3 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 4 | eqid | |- ( LIdeal ` R ) = ( LIdeal ` R ) |
|
| 5 | 2 3 4 | drngnidl | |- ( R e. DivRing -> ( LIdeal ` R ) = { { ( 0g ` R ) } , ( Base ` R ) } ) |
| 6 | eqid | |- ( LPIdeal ` R ) = ( LPIdeal ` R ) |
|
| 7 | 6 3 | lpi0 | |- ( R e. Ring -> { ( 0g ` R ) } e. ( LPIdeal ` R ) ) |
| 8 | 6 2 | lpi1 | |- ( R e. Ring -> ( Base ` R ) e. ( LPIdeal ` R ) ) |
| 9 | 7 8 | prssd | |- ( R e. Ring -> { { ( 0g ` R ) } , ( Base ` R ) } C_ ( LPIdeal ` R ) ) |
| 10 | 1 9 | syl | |- ( R e. DivRing -> { { ( 0g ` R ) } , ( Base ` R ) } C_ ( LPIdeal ` R ) ) |
| 11 | 5 10 | eqsstrd | |- ( R e. DivRing -> ( LIdeal ` R ) C_ ( LPIdeal ` R ) ) |
| 12 | 6 4 | islpir2 | |- ( R e. LPIR <-> ( R e. Ring /\ ( LIdeal ` R ) C_ ( LPIdeal ` R ) ) ) |
| 13 | 1 11 12 | sylanbrc | |- ( R e. DivRing -> R e. LPIR ) |