This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Variable to class conversion of transitive relation. (Contributed by NM, 9-Jun-1998) (Revised by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtoclr.1 | ⊢ Rel 𝑅 | |
| vtoclr.2 | ⊢ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) | ||
| Assertion | vtoclr | ⊢ ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtoclr.1 | ⊢ Rel 𝑅 | |
| 2 | vtoclr.2 | ⊢ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) | |
| 3 | 1 | brrelex12i | ⊢ ( 𝐴 𝑅 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
| 4 | 1 | brrelex2i | ⊢ ( 𝐵 𝑅 𝐶 → 𝐶 ∈ V ) |
| 5 | breq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝑅 𝑦 ↔ 𝐴 𝑅 𝑦 ) ) | |
| 6 | 5 | anbi1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝐶 ) ↔ ( 𝐴 𝑅 𝑦 ∧ 𝑦 𝑅 𝐶 ) ) ) |
| 7 | breq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝑅 𝐶 ↔ 𝐴 𝑅 𝐶 ) ) | |
| 8 | 6 7 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝐶 ) → 𝑥 𝑅 𝐶 ) ↔ ( ( 𝐴 𝑅 𝑦 ∧ 𝑦 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) ) ) |
| 9 | 8 | imbi2d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐶 ∈ V → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝐶 ) → 𝑥 𝑅 𝐶 ) ) ↔ ( 𝐶 ∈ V → ( ( 𝐴 𝑅 𝑦 ∧ 𝑦 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) ) ) ) |
| 10 | breq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝑅 𝑦 ↔ 𝐴 𝑅 𝐵 ) ) | |
| 11 | breq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 𝑅 𝐶 ↔ 𝐵 𝑅 𝐶 ) ) | |
| 12 | 10 11 | anbi12d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 𝑅 𝑦 ∧ 𝑦 𝑅 𝐶 ) ↔ ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) ) ) |
| 13 | 12 | imbi1d | ⊢ ( 𝑦 = 𝐵 → ( ( ( 𝐴 𝑅 𝑦 ∧ 𝑦 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) ↔ ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) ) ) |
| 14 | 13 | imbi2d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐶 ∈ V → ( ( 𝐴 𝑅 𝑦 ∧ 𝑦 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) ) ↔ ( 𝐶 ∈ V → ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) ) ) ) |
| 15 | breq2 | ⊢ ( 𝑧 = 𝐶 → ( 𝑦 𝑅 𝑧 ↔ 𝑦 𝑅 𝐶 ) ) | |
| 16 | 15 | anbi2d | ⊢ ( 𝑧 = 𝐶 → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ↔ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝐶 ) ) ) |
| 17 | breq2 | ⊢ ( 𝑧 = 𝐶 → ( 𝑥 𝑅 𝑧 ↔ 𝑥 𝑅 𝐶 ) ) | |
| 18 | 16 17 | imbi12d | ⊢ ( 𝑧 = 𝐶 → ( ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ↔ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝐶 ) → 𝑥 𝑅 𝐶 ) ) ) |
| 19 | 18 2 | vtoclg | ⊢ ( 𝐶 ∈ V → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝐶 ) → 𝑥 𝑅 𝐶 ) ) |
| 20 | 9 14 19 | vtocl2g | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐶 ∈ V → ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) ) ) |
| 21 | 3 4 20 | syl2im | ⊢ ( 𝐴 𝑅 𝐵 → ( 𝐵 𝑅 𝐶 → ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) ) ) |
| 22 | 21 | imp | ⊢ ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) ) |
| 23 | 22 | pm2.43i | ⊢ ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) |