This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express totality of a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product). (Contributed by NM, 17-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dminxp | ⊢ ( dom ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) = 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 𝐶 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdm4 | ⊢ dom ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) = ran ◡ ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) | |
| 2 | cnvin | ⊢ ◡ ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) = ( ◡ 𝐶 ∩ ◡ ( 𝐴 × 𝐵 ) ) | |
| 3 | cnvxp | ⊢ ◡ ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 ) | |
| 4 | 3 | ineq2i | ⊢ ( ◡ 𝐶 ∩ ◡ ( 𝐴 × 𝐵 ) ) = ( ◡ 𝐶 ∩ ( 𝐵 × 𝐴 ) ) |
| 5 | 2 4 | eqtri | ⊢ ◡ ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) = ( ◡ 𝐶 ∩ ( 𝐵 × 𝐴 ) ) |
| 6 | 5 | rneqi | ⊢ ran ◡ ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) = ran ( ◡ 𝐶 ∩ ( 𝐵 × 𝐴 ) ) |
| 7 | 1 6 | eqtri | ⊢ dom ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) = ran ( ◡ 𝐶 ∩ ( 𝐵 × 𝐴 ) ) |
| 8 | 7 | eqeq1i | ⊢ ( dom ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) = 𝐴 ↔ ran ( ◡ 𝐶 ∩ ( 𝐵 × 𝐴 ) ) = 𝐴 ) |
| 9 | rninxp | ⊢ ( ran ( ◡ 𝐶 ∩ ( 𝐵 × 𝐴 ) ) = 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 ◡ 𝐶 𝑥 ) | |
| 10 | vex | ⊢ 𝑦 ∈ V | |
| 11 | vex | ⊢ 𝑥 ∈ V | |
| 12 | 10 11 | brcnv | ⊢ ( 𝑦 ◡ 𝐶 𝑥 ↔ 𝑥 𝐶 𝑦 ) |
| 13 | 12 | rexbii | ⊢ ( ∃ 𝑦 ∈ 𝐵 𝑦 ◡ 𝐶 𝑥 ↔ ∃ 𝑦 ∈ 𝐵 𝑥 𝐶 𝑦 ) |
| 14 | 13 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 ◡ 𝐶 𝑥 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 𝐶 𝑦 ) |
| 15 | 8 9 14 | 3bitri | ⊢ ( dom ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) = 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 𝐶 𝑦 ) |