This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of a countable set is countable. (Contributed by Thierry Arnoux, 29-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmct | ⊢ ( 𝐴 ≼ ω → dom 𝐴 ≼ ω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmresv | ⊢ dom ( 𝐴 ↾ V ) = dom 𝐴 | |
| 2 | resss | ⊢ ( 𝐴 ↾ V ) ⊆ 𝐴 | |
| 3 | ctex | ⊢ ( 𝐴 ≼ ω → 𝐴 ∈ V ) | |
| 4 | ssexg | ⊢ ( ( ( 𝐴 ↾ V ) ⊆ 𝐴 ∧ 𝐴 ∈ V ) → ( 𝐴 ↾ V ) ∈ V ) | |
| 5 | 2 3 4 | sylancr | ⊢ ( 𝐴 ≼ ω → ( 𝐴 ↾ V ) ∈ V ) |
| 6 | fvex | ⊢ ( 1st ‘ 𝑥 ) ∈ V | |
| 7 | eqid | ⊢ ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st ‘ 𝑥 ) ) = ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st ‘ 𝑥 ) ) | |
| 8 | 6 7 | fnmpti | ⊢ ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st ‘ 𝑥 ) ) Fn ( 𝐴 ↾ V ) |
| 9 | dffn4 | ⊢ ( ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st ‘ 𝑥 ) ) Fn ( 𝐴 ↾ V ) ↔ ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st ‘ 𝑥 ) ) : ( 𝐴 ↾ V ) –onto→ ran ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st ‘ 𝑥 ) ) ) | |
| 10 | 8 9 | mpbi | ⊢ ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st ‘ 𝑥 ) ) : ( 𝐴 ↾ V ) –onto→ ran ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st ‘ 𝑥 ) ) |
| 11 | relres | ⊢ Rel ( 𝐴 ↾ V ) | |
| 12 | reldm | ⊢ ( Rel ( 𝐴 ↾ V ) → dom ( 𝐴 ↾ V ) = ran ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st ‘ 𝑥 ) ) ) | |
| 13 | foeq3 | ⊢ ( dom ( 𝐴 ↾ V ) = ran ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st ‘ 𝑥 ) ) → ( ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st ‘ 𝑥 ) ) : ( 𝐴 ↾ V ) –onto→ dom ( 𝐴 ↾ V ) ↔ ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st ‘ 𝑥 ) ) : ( 𝐴 ↾ V ) –onto→ ran ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st ‘ 𝑥 ) ) ) ) | |
| 14 | 11 12 13 | mp2b | ⊢ ( ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st ‘ 𝑥 ) ) : ( 𝐴 ↾ V ) –onto→ dom ( 𝐴 ↾ V ) ↔ ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st ‘ 𝑥 ) ) : ( 𝐴 ↾ V ) –onto→ ran ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st ‘ 𝑥 ) ) ) |
| 15 | 10 14 | mpbir | ⊢ ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st ‘ 𝑥 ) ) : ( 𝐴 ↾ V ) –onto→ dom ( 𝐴 ↾ V ) |
| 16 | fodomg | ⊢ ( ( 𝐴 ↾ V ) ∈ V → ( ( 𝑥 ∈ ( 𝐴 ↾ V ) ↦ ( 1st ‘ 𝑥 ) ) : ( 𝐴 ↾ V ) –onto→ dom ( 𝐴 ↾ V ) → dom ( 𝐴 ↾ V ) ≼ ( 𝐴 ↾ V ) ) ) | |
| 17 | 5 15 16 | mpisyl | ⊢ ( 𝐴 ≼ ω → dom ( 𝐴 ↾ V ) ≼ ( 𝐴 ↾ V ) ) |
| 18 | ssdomg | ⊢ ( 𝐴 ∈ V → ( ( 𝐴 ↾ V ) ⊆ 𝐴 → ( 𝐴 ↾ V ) ≼ 𝐴 ) ) | |
| 19 | 3 2 18 | mpisyl | ⊢ ( 𝐴 ≼ ω → ( 𝐴 ↾ V ) ≼ 𝐴 ) |
| 20 | domtr | ⊢ ( ( ( 𝐴 ↾ V ) ≼ 𝐴 ∧ 𝐴 ≼ ω ) → ( 𝐴 ↾ V ) ≼ ω ) | |
| 21 | 19 20 | mpancom | ⊢ ( 𝐴 ≼ ω → ( 𝐴 ↾ V ) ≼ ω ) |
| 22 | domtr | ⊢ ( ( dom ( 𝐴 ↾ V ) ≼ ( 𝐴 ↾ V ) ∧ ( 𝐴 ↾ V ) ≼ ω ) → dom ( 𝐴 ↾ V ) ≼ ω ) | |
| 23 | 17 21 22 | syl2anc | ⊢ ( 𝐴 ≼ ω → dom ( 𝐴 ↾ V ) ≼ ω ) |
| 24 | 1 23 | eqbrtrrid | ⊢ ( 𝐴 ≼ ω → dom 𝐴 ≼ ω ) |