This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of a countable set is countable. (Contributed by Thierry Arnoux, 29-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmct | |- ( A ~<_ _om -> dom A ~<_ _om ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmresv | |- dom ( A |` _V ) = dom A |
|
| 2 | resss | |- ( A |` _V ) C_ A |
|
| 3 | ctex | |- ( A ~<_ _om -> A e. _V ) |
|
| 4 | ssexg | |- ( ( ( A |` _V ) C_ A /\ A e. _V ) -> ( A |` _V ) e. _V ) |
|
| 5 | 2 3 4 | sylancr | |- ( A ~<_ _om -> ( A |` _V ) e. _V ) |
| 6 | fvex | |- ( 1st ` x ) e. _V |
|
| 7 | eqid | |- ( x e. ( A |` _V ) |-> ( 1st ` x ) ) = ( x e. ( A |` _V ) |-> ( 1st ` x ) ) |
|
| 8 | 6 7 | fnmpti | |- ( x e. ( A |` _V ) |-> ( 1st ` x ) ) Fn ( A |` _V ) |
| 9 | dffn4 | |- ( ( x e. ( A |` _V ) |-> ( 1st ` x ) ) Fn ( A |` _V ) <-> ( x e. ( A |` _V ) |-> ( 1st ` x ) ) : ( A |` _V ) -onto-> ran ( x e. ( A |` _V ) |-> ( 1st ` x ) ) ) |
|
| 10 | 8 9 | mpbi | |- ( x e. ( A |` _V ) |-> ( 1st ` x ) ) : ( A |` _V ) -onto-> ran ( x e. ( A |` _V ) |-> ( 1st ` x ) ) |
| 11 | relres | |- Rel ( A |` _V ) |
|
| 12 | reldm | |- ( Rel ( A |` _V ) -> dom ( A |` _V ) = ran ( x e. ( A |` _V ) |-> ( 1st ` x ) ) ) |
|
| 13 | foeq3 | |- ( dom ( A |` _V ) = ran ( x e. ( A |` _V ) |-> ( 1st ` x ) ) -> ( ( x e. ( A |` _V ) |-> ( 1st ` x ) ) : ( A |` _V ) -onto-> dom ( A |` _V ) <-> ( x e. ( A |` _V ) |-> ( 1st ` x ) ) : ( A |` _V ) -onto-> ran ( x e. ( A |` _V ) |-> ( 1st ` x ) ) ) ) |
|
| 14 | 11 12 13 | mp2b | |- ( ( x e. ( A |` _V ) |-> ( 1st ` x ) ) : ( A |` _V ) -onto-> dom ( A |` _V ) <-> ( x e. ( A |` _V ) |-> ( 1st ` x ) ) : ( A |` _V ) -onto-> ran ( x e. ( A |` _V ) |-> ( 1st ` x ) ) ) |
| 15 | 10 14 | mpbir | |- ( x e. ( A |` _V ) |-> ( 1st ` x ) ) : ( A |` _V ) -onto-> dom ( A |` _V ) |
| 16 | fodomg | |- ( ( A |` _V ) e. _V -> ( ( x e. ( A |` _V ) |-> ( 1st ` x ) ) : ( A |` _V ) -onto-> dom ( A |` _V ) -> dom ( A |` _V ) ~<_ ( A |` _V ) ) ) |
|
| 17 | 5 15 16 | mpisyl | |- ( A ~<_ _om -> dom ( A |` _V ) ~<_ ( A |` _V ) ) |
| 18 | ssdomg | |- ( A e. _V -> ( ( A |` _V ) C_ A -> ( A |` _V ) ~<_ A ) ) |
|
| 19 | 3 2 18 | mpisyl | |- ( A ~<_ _om -> ( A |` _V ) ~<_ A ) |
| 20 | domtr | |- ( ( ( A |` _V ) ~<_ A /\ A ~<_ _om ) -> ( A |` _V ) ~<_ _om ) |
|
| 21 | 19 20 | mpancom | |- ( A ~<_ _om -> ( A |` _V ) ~<_ _om ) |
| 22 | domtr | |- ( ( dom ( A |` _V ) ~<_ ( A |` _V ) /\ ( A |` _V ) ~<_ _om ) -> dom ( A |` _V ) ~<_ _om ) |
|
| 23 | 17 21 22 | syl2anc | |- ( A ~<_ _om -> dom ( A |` _V ) ~<_ _om ) |
| 24 | 1 23 | eqbrtrrid | |- ( A ~<_ _om -> dom A ~<_ _om ) |