This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A disjoint union is a subclass of a Cartesian product. (Contributed by AV, 25-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djuss | ⊢ ( 𝐴 ⊔ 𝐵 ) ⊆ ( { ∅ , 1o } × ( 𝐴 ∪ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djur | ⊢ ( 𝑥 ∈ ( 𝐴 ⊔ 𝐵 ) → ( ∃ 𝑦 ∈ 𝐴 𝑥 = ( inl ‘ 𝑦 ) ∨ ∃ 𝑦 ∈ 𝐵 𝑥 = ( inr ‘ 𝑦 ) ) ) | |
| 2 | simpr | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 = ( inl ‘ 𝑦 ) ) → 𝑥 = ( inl ‘ 𝑦 ) ) | |
| 3 | df-inl | ⊢ inl = ( 𝑥 ∈ V ↦ 〈 ∅ , 𝑥 〉 ) | |
| 4 | opeq2 | ⊢ ( 𝑥 = 𝑦 → 〈 ∅ , 𝑥 〉 = 〈 ∅ , 𝑦 〉 ) | |
| 5 | elex | ⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ V ) | |
| 6 | opex | ⊢ 〈 ∅ , 𝑦 〉 ∈ V | |
| 7 | 6 | a1i | ⊢ ( 𝑦 ∈ 𝐴 → 〈 ∅ , 𝑦 〉 ∈ V ) |
| 8 | 3 4 5 7 | fvmptd3 | ⊢ ( 𝑦 ∈ 𝐴 → ( inl ‘ 𝑦 ) = 〈 ∅ , 𝑦 〉 ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 = ( inl ‘ 𝑦 ) ) → ( inl ‘ 𝑦 ) = 〈 ∅ , 𝑦 〉 ) |
| 10 | 2 9 | eqtrd | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 = ( inl ‘ 𝑦 ) ) → 𝑥 = 〈 ∅ , 𝑦 〉 ) |
| 11 | elun1 | ⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ) | |
| 12 | 0ex | ⊢ ∅ ∈ V | |
| 13 | 12 | prid1 | ⊢ ∅ ∈ { ∅ , 1o } |
| 14 | 11 13 | jctil | ⊢ ( 𝑦 ∈ 𝐴 → ( ∅ ∈ { ∅ , 1o } ∧ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ) ) |
| 15 | 14 | adantr | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 = ( inl ‘ 𝑦 ) ) → ( ∅ ∈ { ∅ , 1o } ∧ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ) ) |
| 16 | opelxp | ⊢ ( 〈 ∅ , 𝑦 〉 ∈ ( { ∅ , 1o } × ( 𝐴 ∪ 𝐵 ) ) ↔ ( ∅ ∈ { ∅ , 1o } ∧ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ) ) | |
| 17 | 15 16 | sylibr | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 = ( inl ‘ 𝑦 ) ) → 〈 ∅ , 𝑦 〉 ∈ ( { ∅ , 1o } × ( 𝐴 ∪ 𝐵 ) ) ) |
| 18 | 10 17 | eqeltrd | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 = ( inl ‘ 𝑦 ) ) → 𝑥 ∈ ( { ∅ , 1o } × ( 𝐴 ∪ 𝐵 ) ) ) |
| 19 | 18 | rexlimiva | ⊢ ( ∃ 𝑦 ∈ 𝐴 𝑥 = ( inl ‘ 𝑦 ) → 𝑥 ∈ ( { ∅ , 1o } × ( 𝐴 ∪ 𝐵 ) ) ) |
| 20 | simpr | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( inr ‘ 𝑦 ) ) → 𝑥 = ( inr ‘ 𝑦 ) ) | |
| 21 | df-inr | ⊢ inr = ( 𝑥 ∈ V ↦ 〈 1o , 𝑥 〉 ) | |
| 22 | opeq2 | ⊢ ( 𝑥 = 𝑦 → 〈 1o , 𝑥 〉 = 〈 1o , 𝑦 〉 ) | |
| 23 | elex | ⊢ ( 𝑦 ∈ 𝐵 → 𝑦 ∈ V ) | |
| 24 | opex | ⊢ 〈 1o , 𝑦 〉 ∈ V | |
| 25 | 24 | a1i | ⊢ ( 𝑦 ∈ 𝐵 → 〈 1o , 𝑦 〉 ∈ V ) |
| 26 | 21 22 23 25 | fvmptd3 | ⊢ ( 𝑦 ∈ 𝐵 → ( inr ‘ 𝑦 ) = 〈 1o , 𝑦 〉 ) |
| 27 | 26 | adantr | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( inr ‘ 𝑦 ) ) → ( inr ‘ 𝑦 ) = 〈 1o , 𝑦 〉 ) |
| 28 | 20 27 | eqtrd | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( inr ‘ 𝑦 ) ) → 𝑥 = 〈 1o , 𝑦 〉 ) |
| 29 | elun2 | ⊢ ( 𝑦 ∈ 𝐵 → 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ) | |
| 30 | 29 | adantr | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( inr ‘ 𝑦 ) ) → 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ) |
| 31 | 1oex | ⊢ 1o ∈ V | |
| 32 | 31 | prid2 | ⊢ 1o ∈ { ∅ , 1o } |
| 33 | 30 32 | jctil | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( inr ‘ 𝑦 ) ) → ( 1o ∈ { ∅ , 1o } ∧ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ) ) |
| 34 | opelxp | ⊢ ( 〈 1o , 𝑦 〉 ∈ ( { ∅ , 1o } × ( 𝐴 ∪ 𝐵 ) ) ↔ ( 1o ∈ { ∅ , 1o } ∧ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ) ) | |
| 35 | 33 34 | sylibr | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( inr ‘ 𝑦 ) ) → 〈 1o , 𝑦 〉 ∈ ( { ∅ , 1o } × ( 𝐴 ∪ 𝐵 ) ) ) |
| 36 | 28 35 | eqeltrd | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( inr ‘ 𝑦 ) ) → 𝑥 ∈ ( { ∅ , 1o } × ( 𝐴 ∪ 𝐵 ) ) ) |
| 37 | 36 | rexlimiva | ⊢ ( ∃ 𝑦 ∈ 𝐵 𝑥 = ( inr ‘ 𝑦 ) → 𝑥 ∈ ( { ∅ , 1o } × ( 𝐴 ∪ 𝐵 ) ) ) |
| 38 | 19 37 | jaoi | ⊢ ( ( ∃ 𝑦 ∈ 𝐴 𝑥 = ( inl ‘ 𝑦 ) ∨ ∃ 𝑦 ∈ 𝐵 𝑥 = ( inr ‘ 𝑦 ) ) → 𝑥 ∈ ( { ∅ , 1o } × ( 𝐴 ∪ 𝐵 ) ) ) |
| 39 | 1 38 | syl | ⊢ ( 𝑥 ∈ ( 𝐴 ⊔ 𝐵 ) → 𝑥 ∈ ( { ∅ , 1o } × ( 𝐴 ∪ 𝐵 ) ) ) |
| 40 | 39 | ssriv | ⊢ ( 𝐴 ⊔ 𝐵 ) ⊆ ( { ∅ , 1o } × ( 𝐴 ∪ 𝐵 ) ) |