This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The disjoint union of sets is a set. For a shorter proof using djuss see djuexALT . (Contributed by AV, 28-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djuex |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dju | ||
| 2 | snex | ||
| 3 | 2 | a1i | |
| 4 | xpexg | ||
| 5 | 3 4 | sylan | |
| 6 | 5 | ancoms | |
| 7 | snex | ||
| 8 | 7 | a1i | |
| 9 | xpexg | ||
| 10 | 8 9 | sylan | |
| 11 | unexg | ||
| 12 | 6 10 11 | syl2anc | |
| 13 | 1 12 | eqeltrid |