This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Disjoint union is equinumerous to union for disjoint sets. (Contributed by Mario Carneiro, 29-Apr-2015) (Revised by Jim Kingdon, 19-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djuenun | |- ( ( A ~~ B /\ C ~~ D /\ ( B i^i D ) = (/) ) -> ( A |_| C ) ~~ ( B u. D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djuen | |- ( ( A ~~ B /\ C ~~ D ) -> ( A |_| C ) ~~ ( B |_| D ) ) |
|
| 2 | 1 | 3adant3 | |- ( ( A ~~ B /\ C ~~ D /\ ( B i^i D ) = (/) ) -> ( A |_| C ) ~~ ( B |_| D ) ) |
| 3 | relen | |- Rel ~~ |
|
| 4 | 3 | brrelex2i | |- ( A ~~ B -> B e. _V ) |
| 5 | 3 | brrelex2i | |- ( C ~~ D -> D e. _V ) |
| 6 | id | |- ( ( B i^i D ) = (/) -> ( B i^i D ) = (/) ) |
|
| 7 | endjudisj | |- ( ( B e. _V /\ D e. _V /\ ( B i^i D ) = (/) ) -> ( B |_| D ) ~~ ( B u. D ) ) |
|
| 8 | 4 5 6 7 | syl3an | |- ( ( A ~~ B /\ C ~~ D /\ ( B i^i D ) = (/) ) -> ( B |_| D ) ~~ ( B u. D ) ) |
| 9 | entr | |- ( ( ( A |_| C ) ~~ ( B |_| D ) /\ ( B |_| D ) ~~ ( B u. D ) ) -> ( A |_| C ) ~~ ( B u. D ) ) |
|
| 10 | 2 8 9 | syl2anc | |- ( ( A ~~ B /\ C ~~ D /\ ( B i^i D ) = (/) ) -> ( A |_| C ) ~~ ( B u. D ) ) |