This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existential uniqueness of reciprocals. Theorem I.8 of Apostol p. 18. (Contributed by NM, 29-Jan-1995) (Revised by Mario Carneiro, 17-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | receu | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ∃! 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recex | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ∃ 𝑦 ∈ ℂ ( 𝐵 · 𝑦 ) = 1 ) | |
| 2 | 1 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ∃ 𝑦 ∈ ℂ ( 𝐵 · 𝑦 ) = 1 ) |
| 3 | simprl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝐵 · 𝑦 ) = 1 ) ) → 𝑦 ∈ ℂ ) | |
| 4 | simpll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝐵 · 𝑦 ) = 1 ) ) → 𝐴 ∈ ℂ ) | |
| 5 | 3 4 | mulcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝐵 · 𝑦 ) = 1 ) ) → ( 𝑦 · 𝐴 ) ∈ ℂ ) |
| 6 | oveq1 | ⊢ ( ( 𝐵 · 𝑦 ) = 1 → ( ( 𝐵 · 𝑦 ) · 𝐴 ) = ( 1 · 𝐴 ) ) | |
| 7 | 6 | ad2antll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝐵 · 𝑦 ) = 1 ) ) → ( ( 𝐵 · 𝑦 ) · 𝐴 ) = ( 1 · 𝐴 ) ) |
| 8 | simplr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝐵 · 𝑦 ) = 1 ) ) → 𝐵 ∈ ℂ ) | |
| 9 | 8 3 4 | mulassd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝐵 · 𝑦 ) = 1 ) ) → ( ( 𝐵 · 𝑦 ) · 𝐴 ) = ( 𝐵 · ( 𝑦 · 𝐴 ) ) ) |
| 10 | 4 | mullidd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝐵 · 𝑦 ) = 1 ) ) → ( 1 · 𝐴 ) = 𝐴 ) |
| 11 | 7 9 10 | 3eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝐵 · 𝑦 ) = 1 ) ) → ( 𝐵 · ( 𝑦 · 𝐴 ) ) = 𝐴 ) |
| 12 | oveq2 | ⊢ ( 𝑥 = ( 𝑦 · 𝐴 ) → ( 𝐵 · 𝑥 ) = ( 𝐵 · ( 𝑦 · 𝐴 ) ) ) | |
| 13 | 12 | eqeq1d | ⊢ ( 𝑥 = ( 𝑦 · 𝐴 ) → ( ( 𝐵 · 𝑥 ) = 𝐴 ↔ ( 𝐵 · ( 𝑦 · 𝐴 ) ) = 𝐴 ) ) |
| 14 | 13 | rspcev | ⊢ ( ( ( 𝑦 · 𝐴 ) ∈ ℂ ∧ ( 𝐵 · ( 𝑦 · 𝐴 ) ) = 𝐴 ) → ∃ 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) |
| 15 | 5 11 14 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝐵 · 𝑦 ) = 1 ) ) → ∃ 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) |
| 16 | 15 | rexlimdvaa | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∃ 𝑦 ∈ ℂ ( 𝐵 · 𝑦 ) = 1 → ∃ 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) ) |
| 17 | 16 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ∃ 𝑦 ∈ ℂ ( 𝐵 · 𝑦 ) = 1 → ∃ 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) ) |
| 18 | 2 17 | mpd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ∃ 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) |
| 19 | eqtr3 | ⊢ ( ( ( 𝐵 · 𝑥 ) = 𝐴 ∧ ( 𝐵 · 𝑦 ) = 𝐴 ) → ( 𝐵 · 𝑥 ) = ( 𝐵 · 𝑦 ) ) | |
| 20 | mulcan | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐵 · 𝑥 ) = ( 𝐵 · 𝑦 ) ↔ 𝑥 = 𝑦 ) ) | |
| 21 | 19 20 | imbitrid | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( ( 𝐵 · 𝑥 ) = 𝐴 ∧ ( 𝐵 · 𝑦 ) = 𝐴 ) → 𝑥 = 𝑦 ) ) |
| 22 | 21 | 3expa | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( ( 𝐵 · 𝑥 ) = 𝐴 ∧ ( 𝐵 · 𝑦 ) = 𝐴 ) → 𝑥 = 𝑦 ) ) |
| 23 | 22 | expcom | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( ( 𝐵 · 𝑥 ) = 𝐴 ∧ ( 𝐵 · 𝑦 ) = 𝐴 ) → 𝑥 = 𝑦 ) ) ) |
| 24 | 23 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( ( 𝐵 · 𝑥 ) = 𝐴 ∧ ( 𝐵 · 𝑦 ) = 𝐴 ) → 𝑥 = 𝑦 ) ) ) |
| 25 | 24 | ralrimivv | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℂ ( ( ( 𝐵 · 𝑥 ) = 𝐴 ∧ ( 𝐵 · 𝑦 ) = 𝐴 ) → 𝑥 = 𝑦 ) ) |
| 26 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐵 · 𝑥 ) = ( 𝐵 · 𝑦 ) ) | |
| 27 | 26 | eqeq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐵 · 𝑥 ) = 𝐴 ↔ ( 𝐵 · 𝑦 ) = 𝐴 ) ) |
| 28 | 27 | reu4 | ⊢ ( ∃! 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ↔ ( ∃ 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℂ ( ( ( 𝐵 · 𝑥 ) = 𝐴 ∧ ( 𝐵 · 𝑦 ) = 𝐴 ) → 𝑥 = 𝑦 ) ) ) |
| 29 | 18 25 28 | sylanbrc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ∃! 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) |