This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Use strictly less-than in place of less equal in the real limit predicate. (Contributed by Mario Carneiro, 18-Sep-2014) (Revised by Mario Carneiro, 28-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlim0.1 | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐴 𝐵 ∈ ℂ ) | |
| rlim0.2 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | ||
| Assertion | rlim0lt | ⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 0 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 < 𝑧 → ( abs ‘ 𝐵 ) < 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlim0.1 | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐴 𝐵 ∈ ℂ ) | |
| 2 | rlim0.2 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 3 | 0cnd | ⊢ ( 𝜑 → 0 ∈ ℂ ) | |
| 4 | 1 2 3 | rlim2lt | ⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 0 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 < 𝑧 → ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ) ) ) |
| 5 | subid1 | ⊢ ( 𝐵 ∈ ℂ → ( 𝐵 − 0 ) = 𝐵 ) | |
| 6 | 5 | fveq2d | ⊢ ( 𝐵 ∈ ℂ → ( abs ‘ ( 𝐵 − 0 ) ) = ( abs ‘ 𝐵 ) ) |
| 7 | 6 | breq1d | ⊢ ( 𝐵 ∈ ℂ → ( ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ↔ ( abs ‘ 𝐵 ) < 𝑥 ) ) |
| 8 | 7 | imbi2d | ⊢ ( 𝐵 ∈ ℂ → ( ( 𝑦 < 𝑧 → ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ) ↔ ( 𝑦 < 𝑧 → ( abs ‘ 𝐵 ) < 𝑥 ) ) ) |
| 9 | 8 | ralimi | ⊢ ( ∀ 𝑧 ∈ 𝐴 𝐵 ∈ ℂ → ∀ 𝑧 ∈ 𝐴 ( ( 𝑦 < 𝑧 → ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ) ↔ ( 𝑦 < 𝑧 → ( abs ‘ 𝐵 ) < 𝑥 ) ) ) |
| 10 | ralbi | ⊢ ( ∀ 𝑧 ∈ 𝐴 ( ( 𝑦 < 𝑧 → ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ) ↔ ( 𝑦 < 𝑧 → ( abs ‘ 𝐵 ) < 𝑥 ) ) → ( ∀ 𝑧 ∈ 𝐴 ( 𝑦 < 𝑧 → ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ) ↔ ∀ 𝑧 ∈ 𝐴 ( 𝑦 < 𝑧 → ( abs ‘ 𝐵 ) < 𝑥 ) ) ) | |
| 11 | 1 9 10 | 3syl | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝐴 ( 𝑦 < 𝑧 → ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ) ↔ ∀ 𝑧 ∈ 𝐴 ( 𝑦 < 𝑧 → ( abs ‘ 𝐵 ) < 𝑥 ) ) ) |
| 12 | 11 | rexbidv | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 < 𝑧 → ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ) ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 < 𝑧 → ( abs ‘ 𝐵 ) < 𝑥 ) ) ) |
| 13 | 12 | ralbidv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 < 𝑧 → ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 < 𝑧 → ( abs ‘ 𝐵 ) < 𝑥 ) ) ) |
| 14 | 4 13 | bitrd | ⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 0 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 < 𝑧 → ( abs ‘ 𝐵 ) < 𝑥 ) ) ) |