This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse logarithm function converges to zero. (Contributed by Mario Carneiro, 30-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divlogrlim | |- ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) ~~>r 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioore | |- ( x e. ( 1 (,) +oo ) -> x e. RR ) |
|
| 2 | eliooord | |- ( x e. ( 1 (,) +oo ) -> ( 1 < x /\ x < +oo ) ) |
|
| 3 | 2 | simpld | |- ( x e. ( 1 (,) +oo ) -> 1 < x ) |
| 4 | 1 3 | rplogcld | |- ( x e. ( 1 (,) +oo ) -> ( log ` x ) e. RR+ ) |
| 5 | 4 | rprecred | |- ( x e. ( 1 (,) +oo ) -> ( 1 / ( log ` x ) ) e. RR ) |
| 6 | 5 | recnd | |- ( x e. ( 1 (,) +oo ) -> ( 1 / ( log ` x ) ) e. CC ) |
| 7 | 6 | rgen | |- A. x e. ( 1 (,) +oo ) ( 1 / ( log ` x ) ) e. CC |
| 8 | 7 | a1i | |- ( T. -> A. x e. ( 1 (,) +oo ) ( 1 / ( log ` x ) ) e. CC ) |
| 9 | ioossre | |- ( 1 (,) +oo ) C_ RR |
|
| 10 | 9 | a1i | |- ( T. -> ( 1 (,) +oo ) C_ RR ) |
| 11 | 8 10 | rlim0lt | |- ( T. -> ( ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) ~~>r 0 <-> A. y e. RR+ E. c e. RR A. x e. ( 1 (,) +oo ) ( c < x -> ( abs ` ( 1 / ( log ` x ) ) ) < y ) ) ) |
| 12 | 11 | mptru | |- ( ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) ~~>r 0 <-> A. y e. RR+ E. c e. RR A. x e. ( 1 (,) +oo ) ( c < x -> ( abs ` ( 1 / ( log ` x ) ) ) < y ) ) |
| 13 | id | |- ( y e. RR+ -> y e. RR+ ) |
|
| 14 | 13 | rprecred | |- ( y e. RR+ -> ( 1 / y ) e. RR ) |
| 15 | 14 | reefcld | |- ( y e. RR+ -> ( exp ` ( 1 / y ) ) e. RR ) |
| 16 | 5 | ad2antlr | |- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( 1 / ( log ` x ) ) e. RR ) |
| 17 | 1 | ad2antlr | |- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> x e. RR ) |
| 18 | 3 | ad2antlr | |- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> 1 < x ) |
| 19 | 17 18 | rplogcld | |- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( log ` x ) e. RR+ ) |
| 20 | 19 | rpreccld | |- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( 1 / ( log ` x ) ) e. RR+ ) |
| 21 | 20 | rpge0d | |- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> 0 <_ ( 1 / ( log ` x ) ) ) |
| 22 | 16 21 | absidd | |- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( abs ` ( 1 / ( log ` x ) ) ) = ( 1 / ( log ` x ) ) ) |
| 23 | simpll | |- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> y e. RR+ ) |
|
| 24 | 4 | ad2antlr | |- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( log ` x ) e. RR+ ) |
| 25 | simpr | |- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( exp ` ( 1 / y ) ) < x ) |
|
| 26 | 1rp | |- 1 e. RR+ |
|
| 27 | 26 | a1i | |- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> 1 e. RR+ ) |
| 28 | 27 | rpred | |- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> 1 e. RR ) |
| 29 | 28 17 18 | ltled | |- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> 1 <_ x ) |
| 30 | 17 27 29 | rpgecld | |- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> x e. RR+ ) |
| 31 | 30 | reeflogd | |- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( exp ` ( log ` x ) ) = x ) |
| 32 | 25 31 | breqtrrd | |- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( exp ` ( 1 / y ) ) < ( exp ` ( log ` x ) ) ) |
| 33 | 23 | rprecred | |- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( 1 / y ) e. RR ) |
| 34 | 24 | rpred | |- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( log ` x ) e. RR ) |
| 35 | eflt | |- ( ( ( 1 / y ) e. RR /\ ( log ` x ) e. RR ) -> ( ( 1 / y ) < ( log ` x ) <-> ( exp ` ( 1 / y ) ) < ( exp ` ( log ` x ) ) ) ) |
|
| 36 | 33 34 35 | syl2anc | |- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( ( 1 / y ) < ( log ` x ) <-> ( exp ` ( 1 / y ) ) < ( exp ` ( log ` x ) ) ) ) |
| 37 | 32 36 | mpbird | |- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( 1 / y ) < ( log ` x ) ) |
| 38 | 23 24 37 | ltrec1d | |- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( 1 / ( log ` x ) ) < y ) |
| 39 | 22 38 | eqbrtrd | |- ( ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) /\ ( exp ` ( 1 / y ) ) < x ) -> ( abs ` ( 1 / ( log ` x ) ) ) < y ) |
| 40 | 39 | ex | |- ( ( y e. RR+ /\ x e. ( 1 (,) +oo ) ) -> ( ( exp ` ( 1 / y ) ) < x -> ( abs ` ( 1 / ( log ` x ) ) ) < y ) ) |
| 41 | 40 | ralrimiva | |- ( y e. RR+ -> A. x e. ( 1 (,) +oo ) ( ( exp ` ( 1 / y ) ) < x -> ( abs ` ( 1 / ( log ` x ) ) ) < y ) ) |
| 42 | breq1 | |- ( c = ( exp ` ( 1 / y ) ) -> ( c < x <-> ( exp ` ( 1 / y ) ) < x ) ) |
|
| 43 | 42 | rspceaimv | |- ( ( ( exp ` ( 1 / y ) ) e. RR /\ A. x e. ( 1 (,) +oo ) ( ( exp ` ( 1 / y ) ) < x -> ( abs ` ( 1 / ( log ` x ) ) ) < y ) ) -> E. c e. RR A. x e. ( 1 (,) +oo ) ( c < x -> ( abs ` ( 1 / ( log ` x ) ) ) < y ) ) |
| 44 | 15 41 43 | syl2anc | |- ( y e. RR+ -> E. c e. RR A. x e. ( 1 (,) +oo ) ( c < x -> ( abs ` ( 1 / ( log ` x ) ) ) < y ) ) |
| 45 | 12 44 | mprgbir | |- ( x e. ( 1 (,) +oo ) |-> ( 1 / ( log ` x ) ) ) ~~>r 0 |