This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the divides relation. M || N means M divides into N with no remainder. For example, 3 || 6 ( ex-dvds ). As proven in dvdsval3 , M || N <-> ( N mod M ) = 0 . See divides and dvdsval2 for other equivalent expressions. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divides |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br | ||
| 2 | df-dvds | ||
| 3 | 2 | eleq2i | |
| 4 | 1 3 | bitri | |
| 5 | oveq2 | ||
| 6 | 5 | eqeq1d | |
| 7 | 6 | rexbidv | |
| 8 | eqeq2 | ||
| 9 | 8 | rexbidv | |
| 10 | 7 9 | opelopab2 | |
| 11 | 4 10 | bitrid |