This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division of a nonnegative integer by a positive number is not negative. (Contributed by Alexander van der Vekens, 14-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0ge0div | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ ) → 0 ≤ ( 𝐾 / 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ge0 | ⊢ ( 𝐾 ∈ ℕ0 → 0 ≤ 𝐾 ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ ) → 0 ≤ 𝐾 ) |
| 3 | elnnz | ⊢ ( 𝐿 ∈ ℕ ↔ ( 𝐿 ∈ ℤ ∧ 0 < 𝐿 ) ) | |
| 4 | nn0re | ⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ℝ ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ ( 𝐿 ∈ ℤ ∧ 0 < 𝐿 ) ) → 𝐾 ∈ ℝ ) |
| 6 | zre | ⊢ ( 𝐿 ∈ ℤ → 𝐿 ∈ ℝ ) | |
| 7 | 6 | ad2antrl | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ ( 𝐿 ∈ ℤ ∧ 0 < 𝐿 ) ) → 𝐿 ∈ ℝ ) |
| 8 | simprr | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ ( 𝐿 ∈ ℤ ∧ 0 < 𝐿 ) ) → 0 < 𝐿 ) | |
| 9 | 5 7 8 | 3jca | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ ( 𝐿 ∈ ℤ ∧ 0 < 𝐿 ) ) → ( 𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 0 < 𝐿 ) ) |
| 10 | 3 9 | sylan2b | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ ) → ( 𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 0 < 𝐿 ) ) |
| 11 | ge0div | ⊢ ( ( 𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 0 < 𝐿 ) → ( 0 ≤ 𝐾 ↔ 0 ≤ ( 𝐾 / 𝐿 ) ) ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ ) → ( 0 ≤ 𝐾 ↔ 0 ≤ ( 𝐾 / 𝐿 ) ) ) |
| 13 | 2 12 | mpbid | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ ) → 0 ≤ ( 𝐾 / 𝐿 ) ) |