This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer can be moved in and out of the floor of a sum. (Contributed by NM, 27-Apr-2005) (Proof shortened by Fan Zheng, 16-Jun-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fladdz | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ) → ( ⌊ ‘ ( 𝐴 + 𝑁 ) ) = ( ( ⌊ ‘ 𝐴 ) + 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reflcl | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ) → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) |
| 3 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ) → 𝐴 ∈ ℝ ) | |
| 4 | simpr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℤ ) | |
| 5 | 4 | zred | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℝ ) |
| 6 | flle | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ) → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) |
| 8 | 2 3 5 7 | leadd1dd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ) → ( ( ⌊ ‘ 𝐴 ) + 𝑁 ) ≤ ( 𝐴 + 𝑁 ) ) |
| 9 | 1red | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ) → 1 ∈ ℝ ) | |
| 10 | 2 9 | readdcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ) → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
| 11 | flltp1 | ⊢ ( 𝐴 ∈ ℝ → 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) | |
| 12 | 11 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ) → 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) |
| 13 | 3 10 5 12 | ltadd1dd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 + 𝑁 ) < ( ( ( ⌊ ‘ 𝐴 ) + 1 ) + 𝑁 ) ) |
| 14 | 2 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ) → ( ⌊ ‘ 𝐴 ) ∈ ℂ ) |
| 15 | 1cnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ) → 1 ∈ ℂ ) | |
| 16 | 5 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℂ ) |
| 17 | 14 15 16 | add32d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ) → ( ( ( ⌊ ‘ 𝐴 ) + 1 ) + 𝑁 ) = ( ( ( ⌊ ‘ 𝐴 ) + 𝑁 ) + 1 ) ) |
| 18 | 13 17 | breqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 + 𝑁 ) < ( ( ( ⌊ ‘ 𝐴 ) + 𝑁 ) + 1 ) ) |
| 19 | 3 5 | readdcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 + 𝑁 ) ∈ ℝ ) |
| 20 | 3 | flcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ) → ( ⌊ ‘ 𝐴 ) ∈ ℤ ) |
| 21 | 20 4 | zaddcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ) → ( ( ⌊ ‘ 𝐴 ) + 𝑁 ) ∈ ℤ ) |
| 22 | flbi | ⊢ ( ( ( 𝐴 + 𝑁 ) ∈ ℝ ∧ ( ( ⌊ ‘ 𝐴 ) + 𝑁 ) ∈ ℤ ) → ( ( ⌊ ‘ ( 𝐴 + 𝑁 ) ) = ( ( ⌊ ‘ 𝐴 ) + 𝑁 ) ↔ ( ( ( ⌊ ‘ 𝐴 ) + 𝑁 ) ≤ ( 𝐴 + 𝑁 ) ∧ ( 𝐴 + 𝑁 ) < ( ( ( ⌊ ‘ 𝐴 ) + 𝑁 ) + 1 ) ) ) ) | |
| 23 | 19 21 22 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ) → ( ( ⌊ ‘ ( 𝐴 + 𝑁 ) ) = ( ( ⌊ ‘ 𝐴 ) + 𝑁 ) ↔ ( ( ( ⌊ ‘ 𝐴 ) + 𝑁 ) ≤ ( 𝐴 + 𝑁 ) ∧ ( 𝐴 + 𝑁 ) < ( ( ( ⌊ ‘ 𝐴 ) + 𝑁 ) + 1 ) ) ) ) |
| 24 | 8 18 23 | mpbir2and | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ) → ( ⌊ ‘ ( 𝐴 + 𝑁 ) ) = ( ( ⌊ ‘ 𝐴 ) + 𝑁 ) ) |