This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a nonzero integer M divides another integer N , the other integer N divided by the nonzero integer M (i.e. thedivisor conjugate of N to M ) divides the other integer N . Theorem 1.1(k) in ApostolNT p. 14. (Contributed by AV, 7-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divconjdvds | |- ( ( M || N /\ M =/= 0 ) -> ( N / M ) || N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdszrcl | |- ( M || N -> ( M e. ZZ /\ N e. ZZ ) ) |
|
| 2 | simpll | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) -> M e. ZZ ) |
|
| 3 | oveq1 | |- ( m = M -> ( m x. ( N / M ) ) = ( M x. ( N / M ) ) ) |
|
| 4 | 3 | eqeq1d | |- ( m = M -> ( ( m x. ( N / M ) ) = N <-> ( M x. ( N / M ) ) = N ) ) |
| 5 | 4 | adantl | |- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) /\ m = M ) -> ( ( m x. ( N / M ) ) = N <-> ( M x. ( N / M ) ) = N ) ) |
| 6 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 7 | 6 | adantl | |- ( ( M e. ZZ /\ N e. ZZ ) -> N e. CC ) |
| 8 | 7 | adantr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) -> N e. CC ) |
| 9 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 10 | 9 | adantr | |- ( ( M e. ZZ /\ N e. ZZ ) -> M e. CC ) |
| 11 | 10 | adantr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) -> M e. CC ) |
| 12 | simpr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) -> M =/= 0 ) |
|
| 13 | 8 11 12 | divcan2d | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) -> ( M x. ( N / M ) ) = N ) |
| 14 | 2 5 13 | rspcedvd | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) -> E. m e. ZZ ( m x. ( N / M ) ) = N ) |
| 15 | 14 | adantr | |- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) /\ M || N ) -> E. m e. ZZ ( m x. ( N / M ) ) = N ) |
| 16 | simpr | |- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) /\ M || N ) -> M || N ) |
|
| 17 | simpr | |- ( ( M e. ZZ /\ N e. ZZ ) -> N e. ZZ ) |
|
| 18 | 17 | adantr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) -> N e. ZZ ) |
| 19 | 2 12 18 | 3jca | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) -> ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) ) |
| 20 | 19 | adantr | |- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) /\ M || N ) -> ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) ) |
| 21 | dvdsval2 | |- ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) -> ( M || N <-> ( N / M ) e. ZZ ) ) |
|
| 22 | 20 21 | syl | |- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) /\ M || N ) -> ( M || N <-> ( N / M ) e. ZZ ) ) |
| 23 | 16 22 | mpbid | |- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) /\ M || N ) -> ( N / M ) e. ZZ ) |
| 24 | 18 | adantr | |- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) /\ M || N ) -> N e. ZZ ) |
| 25 | divides | |- ( ( ( N / M ) e. ZZ /\ N e. ZZ ) -> ( ( N / M ) || N <-> E. m e. ZZ ( m x. ( N / M ) ) = N ) ) |
|
| 26 | 23 24 25 | syl2anc | |- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) /\ M || N ) -> ( ( N / M ) || N <-> E. m e. ZZ ( m x. ( N / M ) ) = N ) ) |
| 27 | 15 26 | mpbird | |- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) /\ M || N ) -> ( N / M ) || N ) |
| 28 | 27 | exp31 | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M =/= 0 -> ( M || N -> ( N / M ) || N ) ) ) |
| 29 | 28 | com3r | |- ( M || N -> ( ( M e. ZZ /\ N e. ZZ ) -> ( M =/= 0 -> ( N / M ) || N ) ) ) |
| 30 | 1 29 | mpd | |- ( M || N -> ( M =/= 0 -> ( N / M ) || N ) ) |
| 31 | 30 | imp | |- ( ( M || N /\ M =/= 0 ) -> ( N / M ) || N ) |