This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Disjoint restriction. (Contributed by Peter Mazsa, 25-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjres | ⊢ ( Rel 𝑅 → ( Disj ( 𝑅 ↾ 𝐴 ) ↔ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres | ⊢ Rel ( 𝑅 ↾ 𝐴 ) | |
| 2 | dfdisjALTV4 | ⊢ ( Disj ( 𝑅 ↾ 𝐴 ) ↔ ( ∀ 𝑥 ∃* 𝑢 𝑢 ( 𝑅 ↾ 𝐴 ) 𝑥 ∧ Rel ( 𝑅 ↾ 𝐴 ) ) ) | |
| 3 | 1 2 | mpbiran2 | ⊢ ( Disj ( 𝑅 ↾ 𝐴 ) ↔ ∀ 𝑥 ∃* 𝑢 𝑢 ( 𝑅 ↾ 𝐴 ) 𝑥 ) |
| 4 | brres | ⊢ ( 𝑥 ∈ V → ( 𝑢 ( 𝑅 ↾ 𝐴 ) 𝑥 ↔ ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑅 𝑥 ) ) ) | |
| 5 | 4 | elv | ⊢ ( 𝑢 ( 𝑅 ↾ 𝐴 ) 𝑥 ↔ ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑅 𝑥 ) ) |
| 6 | 5 | mobii | ⊢ ( ∃* 𝑢 𝑢 ( 𝑅 ↾ 𝐴 ) 𝑥 ↔ ∃* 𝑢 ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑅 𝑥 ) ) |
| 7 | df-rmo | ⊢ ( ∃* 𝑢 ∈ 𝐴 𝑢 𝑅 𝑥 ↔ ∃* 𝑢 ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑅 𝑥 ) ) | |
| 8 | 6 7 | bitr4i | ⊢ ( ∃* 𝑢 𝑢 ( 𝑅 ↾ 𝐴 ) 𝑥 ↔ ∃* 𝑢 ∈ 𝐴 𝑢 𝑅 𝑥 ) |
| 9 | 8 | albii | ⊢ ( ∀ 𝑥 ∃* 𝑢 𝑢 ( 𝑅 ↾ 𝐴 ) 𝑥 ↔ ∀ 𝑥 ∃* 𝑢 ∈ 𝐴 𝑢 𝑅 𝑥 ) |
| 10 | 3 9 | bitri | ⊢ ( Disj ( 𝑅 ↾ 𝐴 ) ↔ ∀ 𝑥 ∃* 𝑢 ∈ 𝐴 𝑢 𝑅 𝑥 ) |
| 11 | id | ⊢ ( 𝑢 = 𝑣 → 𝑢 = 𝑣 ) | |
| 12 | 11 | inecmo | ⊢ ( Rel 𝑅 → ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ↔ ∀ 𝑥 ∃* 𝑢 ∈ 𝐴 𝑢 𝑅 𝑥 ) ) |
| 13 | 10 12 | bitr4id | ⊢ ( Rel 𝑅 → ( Disj ( 𝑅 ↾ 𝐴 ) ↔ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ) ) |