This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Disjoint restriction. (Contributed by Peter Mazsa, 25-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjres | |- ( Rel R -> ( Disj ( R |` A ) <-> A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres | |- Rel ( R |` A ) |
|
| 2 | dfdisjALTV4 | |- ( Disj ( R |` A ) <-> ( A. x E* u u ( R |` A ) x /\ Rel ( R |` A ) ) ) |
|
| 3 | 1 2 | mpbiran2 | |- ( Disj ( R |` A ) <-> A. x E* u u ( R |` A ) x ) |
| 4 | brres | |- ( x e. _V -> ( u ( R |` A ) x <-> ( u e. A /\ u R x ) ) ) |
|
| 5 | 4 | elv | |- ( u ( R |` A ) x <-> ( u e. A /\ u R x ) ) |
| 6 | 5 | mobii | |- ( E* u u ( R |` A ) x <-> E* u ( u e. A /\ u R x ) ) |
| 7 | df-rmo | |- ( E* u e. A u R x <-> E* u ( u e. A /\ u R x ) ) |
|
| 8 | 6 7 | bitr4i | |- ( E* u u ( R |` A ) x <-> E* u e. A u R x ) |
| 9 | 8 | albii | |- ( A. x E* u u ( R |` A ) x <-> A. x E* u e. A u R x ) |
| 10 | 3 9 | bitri | |- ( Disj ( R |` A ) <-> A. x E* u e. A u R x ) |
| 11 | id | |- ( u = v -> u = v ) |
|
| 12 | 11 | inecmo | |- ( Rel R -> ( A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) <-> A. x E* u e. A u R x ) ) |
| 13 | 10 12 | bitr4id | |- ( Rel R -> ( Disj ( R |` A ) <-> A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) ) ) |