This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A collection of classes B ( x ) is disjoint when for each element y , it is in B ( x ) for at most one x . (Contributed by Mario Carneiro, 14-Nov-2016) (Revised by NM, 16-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-disj | ⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | vx | ⊢ 𝑥 | |
| 1 | cA | ⊢ 𝐴 | |
| 2 | cB | ⊢ 𝐵 | |
| 3 | 0 1 2 | wdisj | ⊢ Disj 𝑥 ∈ 𝐴 𝐵 |
| 4 | vy | ⊢ 𝑦 | |
| 5 | 4 | cv | ⊢ 𝑦 |
| 6 | 5 2 | wcel | ⊢ 𝑦 ∈ 𝐵 |
| 7 | 6 0 1 | wrmo | ⊢ ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 |
| 8 | 7 4 | wal | ⊢ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 |
| 9 | 3 8 | wb | ⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |