This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions for a collection of sets A ( a ) for a e. V to be disjoint. (Contributed by AV, 9-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | disjord.1 | ⊢ ( 𝑎 = 𝑏 → 𝐴 = 𝐵 ) | |
| disjord.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → 𝑎 = 𝑏 ) | ||
| Assertion | disjord | ⊢ ( 𝜑 → Disj 𝑎 ∈ 𝑉 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjord.1 | ⊢ ( 𝑎 = 𝑏 → 𝐴 = 𝐵 ) | |
| 2 | disjord.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → 𝑎 = 𝑏 ) | |
| 3 | orc | ⊢ ( 𝑎 = 𝑏 → ( 𝑎 = 𝑏 ∨ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) | |
| 4 | 3 | a1d | ⊢ ( 𝑎 = 𝑏 → ( 𝜑 → ( 𝑎 = 𝑏 ∨ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) ) |
| 5 | 2 | 3expia | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐵 → 𝑎 = 𝑏 ) ) |
| 6 | 5 | con3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ¬ 𝑎 = 𝑏 → ¬ 𝑥 ∈ 𝐵 ) ) |
| 7 | 6 | impancom | ⊢ ( ( 𝜑 ∧ ¬ 𝑎 = 𝑏 ) → ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) |
| 8 | 7 | ralrimiv | ⊢ ( ( 𝜑 ∧ ¬ 𝑎 = 𝑏 ) → ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) |
| 9 | disj | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) | |
| 10 | 8 9 | sylibr | ⊢ ( ( 𝜑 ∧ ¬ 𝑎 = 𝑏 ) → ( 𝐴 ∩ 𝐵 ) = ∅ ) |
| 11 | 10 | olcd | ⊢ ( ( 𝜑 ∧ ¬ 𝑎 = 𝑏 ) → ( 𝑎 = 𝑏 ∨ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) |
| 12 | 11 | expcom | ⊢ ( ¬ 𝑎 = 𝑏 → ( 𝜑 → ( 𝑎 = 𝑏 ∨ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) ) |
| 13 | 4 12 | pm2.61i | ⊢ ( 𝜑 → ( 𝑎 = 𝑏 ∨ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( 𝑎 = 𝑏 ∨ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) |
| 15 | 14 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑎 = 𝑏 ∨ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) |
| 16 | 1 | disjor | ⊢ ( Disj 𝑎 ∈ 𝑉 𝐴 ↔ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑎 = 𝑏 ∨ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) |
| 17 | 15 16 | sylibr | ⊢ ( 𝜑 → Disj 𝑎 ∈ 𝑉 𝐴 ) |