This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence version of disjen . (Contributed by Mario Carneiro, 7-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjenex | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ∃ 𝑥 ( ( 𝐴 ∩ 𝑥 ) = ∅ ∧ 𝑥 ≈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝐵 ∈ 𝑊 ) | |
| 2 | snex | ⊢ { 𝒫 ∪ ran 𝐴 } ∈ V | |
| 3 | xpexg | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ { 𝒫 ∪ ran 𝐴 } ∈ V ) → ( 𝐵 × { 𝒫 ∪ ran 𝐴 } ) ∈ V ) | |
| 4 | 1 2 3 | sylancl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐵 × { 𝒫 ∪ ran 𝐴 } ) ∈ V ) |
| 5 | disjen | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 ∩ ( 𝐵 × { 𝒫 ∪ ran 𝐴 } ) ) = ∅ ∧ ( 𝐵 × { 𝒫 ∪ ran 𝐴 } ) ≈ 𝐵 ) ) | |
| 6 | ineq2 | ⊢ ( 𝑥 = ( 𝐵 × { 𝒫 ∪ ran 𝐴 } ) → ( 𝐴 ∩ 𝑥 ) = ( 𝐴 ∩ ( 𝐵 × { 𝒫 ∪ ran 𝐴 } ) ) ) | |
| 7 | 6 | eqeq1d | ⊢ ( 𝑥 = ( 𝐵 × { 𝒫 ∪ ran 𝐴 } ) → ( ( 𝐴 ∩ 𝑥 ) = ∅ ↔ ( 𝐴 ∩ ( 𝐵 × { 𝒫 ∪ ran 𝐴 } ) ) = ∅ ) ) |
| 8 | breq1 | ⊢ ( 𝑥 = ( 𝐵 × { 𝒫 ∪ ran 𝐴 } ) → ( 𝑥 ≈ 𝐵 ↔ ( 𝐵 × { 𝒫 ∪ ran 𝐴 } ) ≈ 𝐵 ) ) | |
| 9 | 7 8 | anbi12d | ⊢ ( 𝑥 = ( 𝐵 × { 𝒫 ∪ ran 𝐴 } ) → ( ( ( 𝐴 ∩ 𝑥 ) = ∅ ∧ 𝑥 ≈ 𝐵 ) ↔ ( ( 𝐴 ∩ ( 𝐵 × { 𝒫 ∪ ran 𝐴 } ) ) = ∅ ∧ ( 𝐵 × { 𝒫 ∪ ran 𝐴 } ) ≈ 𝐵 ) ) ) |
| 10 | 4 5 9 | spcedv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ∃ 𝑥 ( ( 𝐴 ∩ 𝑥 ) = ∅ ∧ 𝑥 ≈ 𝐵 ) ) |