This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying that cosets are disjoint, special case of disjecxrn . (Contributed by Peter Mazsa, 12-Jul-2020) (Revised by Peter Mazsa, 25-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjecxrncnvep | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐴 ] ( 𝑅 ⋉ ◡ E ) ∩ [ 𝐵 ] ( 𝑅 ⋉ ◡ E ) ) = ∅ ↔ ( ( 𝐴 ∩ 𝐵 ) = ∅ ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjecxrn | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐴 ] ( 𝑅 ⋉ ◡ E ) ∩ [ 𝐵 ] ( 𝑅 ⋉ ◡ E ) ) = ∅ ↔ ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ∨ ( [ 𝐴 ] ◡ E ∩ [ 𝐵 ] ◡ E ) = ∅ ) ) ) | |
| 2 | orcom | ⊢ ( ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ∨ ( [ 𝐴 ] ◡ E ∩ [ 𝐵 ] ◡ E ) = ∅ ) ↔ ( ( [ 𝐴 ] ◡ E ∩ [ 𝐵 ] ◡ E ) = ∅ ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ) ) | |
| 3 | 1 2 | bitrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐴 ] ( 𝑅 ⋉ ◡ E ) ∩ [ 𝐵 ] ( 𝑅 ⋉ ◡ E ) ) = ∅ ↔ ( ( [ 𝐴 ] ◡ E ∩ [ 𝐵 ] ◡ E ) = ∅ ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ) ) ) |
| 4 | disjeccnvep | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐴 ] ◡ E ∩ [ 𝐵 ] ◡ E ) = ∅ ↔ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) | |
| 5 | 4 | orbi1d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( ( [ 𝐴 ] ◡ E ∩ [ 𝐵 ] ◡ E ) = ∅ ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ) ↔ ( ( 𝐴 ∩ 𝐵 ) = ∅ ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ) ) ) |
| 6 | 3 5 | bitrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐴 ] ( 𝑅 ⋉ ◡ E ) ∩ [ 𝐵 ] ( 𝑅 ⋉ ◡ E ) ) = ∅ ↔ ( ( 𝐴 ∩ 𝐵 ) = ∅ ∨ ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ) ) ) |