This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying that the coset of A and the coset of B have some elements in common. (Contributed by Peter Mazsa, 23-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecinn0 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ≠ ∅ ↔ ∃ 𝑥 ( 𝐴 𝑅 𝑥 ∧ 𝐵 𝑅 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecin0 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ↔ ∀ 𝑥 ( 𝐴 𝑅 𝑥 → ¬ 𝐵 𝑅 𝑥 ) ) ) | |
| 2 | 1 | necon3abid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ≠ ∅ ↔ ¬ ∀ 𝑥 ( 𝐴 𝑅 𝑥 → ¬ 𝐵 𝑅 𝑥 ) ) ) |
| 3 | notnotb | ⊢ ( 𝐵 𝑅 𝑥 ↔ ¬ ¬ 𝐵 𝑅 𝑥 ) | |
| 4 | 3 | anbi2i | ⊢ ( ( 𝐴 𝑅 𝑥 ∧ 𝐵 𝑅 𝑥 ) ↔ ( 𝐴 𝑅 𝑥 ∧ ¬ ¬ 𝐵 𝑅 𝑥 ) ) |
| 5 | 4 | exbii | ⊢ ( ∃ 𝑥 ( 𝐴 𝑅 𝑥 ∧ 𝐵 𝑅 𝑥 ) ↔ ∃ 𝑥 ( 𝐴 𝑅 𝑥 ∧ ¬ ¬ 𝐵 𝑅 𝑥 ) ) |
| 6 | exanali | ⊢ ( ∃ 𝑥 ( 𝐴 𝑅 𝑥 ∧ ¬ ¬ 𝐵 𝑅 𝑥 ) ↔ ¬ ∀ 𝑥 ( 𝐴 𝑅 𝑥 → ¬ 𝐵 𝑅 𝑥 ) ) | |
| 7 | 5 6 | bitri | ⊢ ( ∃ 𝑥 ( 𝐴 𝑅 𝑥 ∧ 𝐵 𝑅 𝑥 ) ↔ ¬ ∀ 𝑥 ( 𝐴 𝑅 𝑥 → ¬ 𝐵 𝑅 𝑥 ) ) |
| 8 | 2 7 | bitr4di | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ≠ ∅ ↔ ∃ 𝑥 ( 𝐴 𝑅 𝑥 ∧ 𝐵 𝑅 𝑥 ) ) ) |