This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ( R |X. S ) -coset of A . (Contributed by Peter Mazsa, 18-Apr-2020) (Revised by Peter Mazsa, 21-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecxrn | ⊢ ( 𝐴 ∈ 𝑉 → [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝐴 𝑅 𝑦 ∧ 𝐴 𝑆 𝑧 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elecxrn | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝐴 𝑅 𝑦 ∧ 𝐴 𝑆 𝑧 ) ) ) | |
| 2 | 3anass | ⊢ ( ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝐴 𝑅 𝑦 ∧ 𝐴 𝑆 𝑧 ) ↔ ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝐴 𝑅 𝑦 ∧ 𝐴 𝑆 𝑧 ) ) ) | |
| 3 | 2 | 2exbii | ⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ 𝐴 𝑅 𝑦 ∧ 𝐴 𝑆 𝑧 ) ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝐴 𝑅 𝑦 ∧ 𝐴 𝑆 𝑧 ) ) ) |
| 4 | 1 3 | bitrdi | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝐴 𝑅 𝑦 ∧ 𝐴 𝑆 𝑧 ) ) ) ) |
| 5 | elopab | ⊢ ( 𝑥 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( 𝐴 𝑅 𝑦 ∧ 𝐴 𝑆 𝑧 ) } ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 〈 𝑦 , 𝑧 〉 ∧ ( 𝐴 𝑅 𝑦 ∧ 𝐴 𝑆 𝑧 ) ) ) | |
| 6 | 4 5 | bitr4di | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ↔ 𝑥 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( 𝐴 𝑅 𝑦 ∧ 𝐴 𝑆 𝑧 ) } ) ) |
| 7 | 6 | eqrdv | ⊢ ( 𝐴 ∈ 𝑉 → [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝐴 𝑅 𝑦 ∧ 𝐴 𝑆 𝑧 ) } ) |