This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A discrete category (a category whose only morphisms are the identity morphisms) with a singlegon base is terminal. Corollary of example 3.3(4)(c) of Adamek p. 24 and example 3.26(1) of Adamek p. 33. (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | discthin.k | ⊢ 𝐾 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( le ‘ ndx ) , ( I ↾ 𝐵 ) 〉 } | |
| discthin.c | ⊢ 𝐶 = ( ProsetToCat ‘ 𝐾 ) | ||
| Assertion | discsnterm | ⊢ ( ∃ 𝑥 𝐵 = { 𝑥 } → 𝐶 ∈ TermCat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | discthin.k | ⊢ 𝐾 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( le ‘ ndx ) , ( I ↾ 𝐵 ) 〉 } | |
| 2 | discthin.c | ⊢ 𝐶 = ( ProsetToCat ‘ 𝐾 ) | |
| 3 | discsntermlem | ⊢ ( ∃ 𝑥 𝐵 = { 𝑥 } → 𝐵 ∈ { 𝑏 ∣ ∃ 𝑥 𝑏 = { 𝑥 } } ) | |
| 4 | 1 2 | discthin | ⊢ ( 𝐵 ∈ { 𝑏 ∣ ∃ 𝑥 𝑏 = { 𝑥 } } → 𝐶 ∈ ThinCat ) |
| 5 | 3 4 | syl | ⊢ ( ∃ 𝑥 𝐵 = { 𝑥 } → 𝐶 ∈ ThinCat ) |
| 6 | elex | ⊢ ( 𝐵 ∈ { 𝑏 ∣ ∃ 𝑥 𝑏 = { 𝑥 } } → 𝐵 ∈ V ) | |
| 7 | 1 2 | discbas | ⊢ ( 𝐵 ∈ V → 𝐵 = ( Base ‘ 𝐶 ) ) |
| 8 | 7 | eqeq1d | ⊢ ( 𝐵 ∈ V → ( 𝐵 = { 𝑥 } ↔ ( Base ‘ 𝐶 ) = { 𝑥 } ) ) |
| 9 | 8 | exbidv | ⊢ ( 𝐵 ∈ V → ( ∃ 𝑥 𝐵 = { 𝑥 } ↔ ∃ 𝑥 ( Base ‘ 𝐶 ) = { 𝑥 } ) ) |
| 10 | 3 6 9 | 3syl | ⊢ ( ∃ 𝑥 𝐵 = { 𝑥 } → ( ∃ 𝑥 𝐵 = { 𝑥 } ↔ ∃ 𝑥 ( Base ‘ 𝐶 ) = { 𝑥 } ) ) |
| 11 | 10 | ibi | ⊢ ( ∃ 𝑥 𝐵 = { 𝑥 } → ∃ 𝑥 ( Base ‘ 𝐶 ) = { 𝑥 } ) |
| 12 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 13 | 12 | istermc | ⊢ ( 𝐶 ∈ TermCat ↔ ( 𝐶 ∈ ThinCat ∧ ∃ 𝑥 ( Base ‘ 𝐶 ) = { 𝑥 } ) ) |
| 14 | 5 11 13 | sylanbrc | ⊢ ( ∃ 𝑥 𝐵 = { 𝑥 } → 𝐶 ∈ TermCat ) |