This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A discrete category (a category whose only morphisms are the identity morphisms) with a singlegon base is terminal. Corollary of example 3.3(4)(c) of Adamek p. 24 and example 3.26(1) of Adamek p. 33. (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | discthin.k | |- K = { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } |
|
| discthin.c | |- C = ( ProsetToCat ` K ) |
||
| Assertion | discsnterm | |- ( E. x B = { x } -> C e. TermCat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | discthin.k | |- K = { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } |
|
| 2 | discthin.c | |- C = ( ProsetToCat ` K ) |
|
| 3 | discsntermlem | |- ( E. x B = { x } -> B e. { b | E. x b = { x } } ) |
|
| 4 | 1 2 | discthin | |- ( B e. { b | E. x b = { x } } -> C e. ThinCat ) |
| 5 | 3 4 | syl | |- ( E. x B = { x } -> C e. ThinCat ) |
| 6 | elex | |- ( B e. { b | E. x b = { x } } -> B e. _V ) |
|
| 7 | 1 2 | discbas | |- ( B e. _V -> B = ( Base ` C ) ) |
| 8 | 7 | eqeq1d | |- ( B e. _V -> ( B = { x } <-> ( Base ` C ) = { x } ) ) |
| 9 | 8 | exbidv | |- ( B e. _V -> ( E. x B = { x } <-> E. x ( Base ` C ) = { x } ) ) |
| 10 | 3 6 9 | 3syl | |- ( E. x B = { x } -> ( E. x B = { x } <-> E. x ( Base ` C ) = { x } ) ) |
| 11 | 10 | ibi | |- ( E. x B = { x } -> E. x ( Base ` C ) = { x } ) |
| 12 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 13 | 12 | istermc | |- ( C e. TermCat <-> ( C e. ThinCat /\ E. x ( Base ` C ) = { x } ) ) |
| 14 | 5 11 13 | sylanbrc | |- ( E. x B = { x } -> C e. TermCat ) |