This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base function restricted to the class of terminal categories maps the class of terminal categories onto the class of singletons. (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | basrestermcfo | ⊢ ( Base ↾ TermCat ) : TermCat –onto→ { 𝑏 ∣ ∃ 𝑥 𝑏 = { 𝑥 } } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | basfn | ⊢ Base Fn V | |
| 2 | id | ⊢ ( 𝑐 ∈ TermCat → 𝑐 ∈ TermCat ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑐 ) = ( Base ‘ 𝑐 ) | |
| 4 | 2 3 | termcbas | ⊢ ( 𝑐 ∈ TermCat → ∃ 𝑥 ( Base ‘ 𝑐 ) = { 𝑥 } ) |
| 5 | discsntermlem | ⊢ ( ∃ 𝑥 ( Base ‘ 𝑐 ) = { 𝑥 } → ( Base ‘ 𝑐 ) ∈ { 𝑏 ∣ ∃ 𝑥 𝑏 = { 𝑥 } } ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑐 ∈ TermCat → ( Base ‘ 𝑐 ) ∈ { 𝑏 ∣ ∃ 𝑥 𝑏 = { 𝑥 } } ) |
| 7 | basrestermcfolem | ⊢ ( 𝑎 ∈ { 𝑏 ∣ ∃ 𝑥 𝑏 = { 𝑥 } } → ∃ 𝑥 𝑎 = { 𝑥 } ) | |
| 8 | eqid | ⊢ { 〈 ( Base ‘ ndx ) , 𝑎 〉 , 〈 ( le ‘ ndx ) , ( I ↾ 𝑎 ) 〉 } = { 〈 ( Base ‘ ndx ) , 𝑎 〉 , 〈 ( le ‘ ndx ) , ( I ↾ 𝑎 ) 〉 } | |
| 9 | eqid | ⊢ ( ProsetToCat ‘ { 〈 ( Base ‘ ndx ) , 𝑎 〉 , 〈 ( le ‘ ndx ) , ( I ↾ 𝑎 ) 〉 } ) = ( ProsetToCat ‘ { 〈 ( Base ‘ ndx ) , 𝑎 〉 , 〈 ( le ‘ ndx ) , ( I ↾ 𝑎 ) 〉 } ) | |
| 10 | 8 9 | discsnterm | ⊢ ( ∃ 𝑥 𝑎 = { 𝑥 } → ( ProsetToCat ‘ { 〈 ( Base ‘ ndx ) , 𝑎 〉 , 〈 ( le ‘ ndx ) , ( I ↾ 𝑎 ) 〉 } ) ∈ TermCat ) |
| 11 | 7 10 | syl | ⊢ ( 𝑎 ∈ { 𝑏 ∣ ∃ 𝑥 𝑏 = { 𝑥 } } → ( ProsetToCat ‘ { 〈 ( Base ‘ ndx ) , 𝑎 〉 , 〈 ( le ‘ ndx ) , ( I ↾ 𝑎 ) 〉 } ) ∈ TermCat ) |
| 12 | 8 9 | discbas | ⊢ ( 𝑎 ∈ { 𝑏 ∣ ∃ 𝑥 𝑏 = { 𝑥 } } → 𝑎 = ( Base ‘ ( ProsetToCat ‘ { 〈 ( Base ‘ ndx ) , 𝑎 〉 , 〈 ( le ‘ ndx ) , ( I ↾ 𝑎 ) 〉 } ) ) ) |
| 13 | 1 6 11 12 | slotresfo | ⊢ ( Base ↾ TermCat ) : TermCat –onto→ { 𝑏 ∣ ∃ 𝑥 𝑏 = { 𝑥 } } |