This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Associative" law for second argument of inner product (compare dipass ). (Contributed by NM, 22-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipass.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| ipass.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| ipass.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| Assertion | dipassr | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝑃 ( 𝐵 𝑆 𝐶 ) ) = ( ( ∗ ‘ 𝐵 ) · ( 𝐴 𝑃 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipass.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | ipass.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 3 | ipass.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 4 | 3anrot | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ↔ ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) | |
| 5 | 1 2 3 | dipass | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝐵 𝑆 𝐶 ) 𝑃 𝐴 ) = ( 𝐵 · ( 𝐶 𝑃 𝐴 ) ) ) |
| 6 | 4 5 | sylan2b | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐵 𝑆 𝐶 ) 𝑃 𝐴 ) = ( 𝐵 · ( 𝐶 𝑃 𝐴 ) ) ) |
| 7 | 6 | fveq2d | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → ( ∗ ‘ ( ( 𝐵 𝑆 𝐶 ) 𝑃 𝐴 ) ) = ( ∗ ‘ ( 𝐵 · ( 𝐶 𝑃 𝐴 ) ) ) ) |
| 8 | phnv | ⊢ ( 𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec ) | |
| 9 | simpl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → 𝑈 ∈ NrmCVec ) | |
| 10 | 1 2 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 𝑆 𝐶 ) ∈ 𝑋 ) |
| 11 | 10 | 3adant3r1 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 𝑆 𝐶 ) ∈ 𝑋 ) |
| 12 | simpr1 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) | |
| 13 | 1 3 | dipcj | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐵 𝑆 𝐶 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ∗ ‘ ( ( 𝐵 𝑆 𝐶 ) 𝑃 𝐴 ) ) = ( 𝐴 𝑃 ( 𝐵 𝑆 𝐶 ) ) ) |
| 14 | 9 11 12 13 | syl3anc | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → ( ∗ ‘ ( ( 𝐵 𝑆 𝐶 ) 𝑃 𝐴 ) ) = ( 𝐴 𝑃 ( 𝐵 𝑆 𝐶 ) ) ) |
| 15 | 8 14 | sylan | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → ( ∗ ‘ ( ( 𝐵 𝑆 𝐶 ) 𝑃 𝐴 ) ) = ( 𝐴 𝑃 ( 𝐵 𝑆 𝐶 ) ) ) |
| 16 | simpr2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → 𝐵 ∈ ℂ ) | |
| 17 | 1 3 | dipcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐶 𝑃 𝐴 ) ∈ ℂ ) |
| 18 | 17 | 3com23 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐶 𝑃 𝐴 ) ∈ ℂ ) |
| 19 | 18 | 3adant3r2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐶 𝑃 𝐴 ) ∈ ℂ ) |
| 20 | 16 19 | cjmuld | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → ( ∗ ‘ ( 𝐵 · ( 𝐶 𝑃 𝐴 ) ) ) = ( ( ∗ ‘ 𝐵 ) · ( ∗ ‘ ( 𝐶 𝑃 𝐴 ) ) ) ) |
| 21 | 1 3 | dipcj | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ∗ ‘ ( 𝐶 𝑃 𝐴 ) ) = ( 𝐴 𝑃 𝐶 ) ) |
| 22 | 21 | 3com23 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( ∗ ‘ ( 𝐶 𝑃 𝐴 ) ) = ( 𝐴 𝑃 𝐶 ) ) |
| 23 | 22 | 3adant3r2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → ( ∗ ‘ ( 𝐶 𝑃 𝐴 ) ) = ( 𝐴 𝑃 𝐶 ) ) |
| 24 | 23 | oveq2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → ( ( ∗ ‘ 𝐵 ) · ( ∗ ‘ ( 𝐶 𝑃 𝐴 ) ) ) = ( ( ∗ ‘ 𝐵 ) · ( 𝐴 𝑃 𝐶 ) ) ) |
| 25 | 20 24 | eqtrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → ( ∗ ‘ ( 𝐵 · ( 𝐶 𝑃 𝐴 ) ) ) = ( ( ∗ ‘ 𝐵 ) · ( 𝐴 𝑃 𝐶 ) ) ) |
| 26 | 8 25 | sylan | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → ( ∗ ‘ ( 𝐵 · ( 𝐶 𝑃 𝐴 ) ) ) = ( ( ∗ ‘ 𝐵 ) · ( 𝐴 𝑃 𝐶 ) ) ) |
| 27 | 7 15 26 | 3eqtr3d | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝑃 ( 𝐵 𝑆 𝐶 ) ) = ( ( ∗ ‘ 𝐵 ) · ( 𝐴 𝑃 𝐶 ) ) ) |