This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Associative" law for second argument of inner product (compare dipass ). (Contributed by NM, 22-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipass.1 | |- X = ( BaseSet ` U ) |
|
| ipass.4 | |- S = ( .sOLD ` U ) |
||
| ipass.7 | |- P = ( .iOLD ` U ) |
||
| Assertion | dipassr | |- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. CC /\ C e. X ) ) -> ( A P ( B S C ) ) = ( ( * ` B ) x. ( A P C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipass.1 | |- X = ( BaseSet ` U ) |
|
| 2 | ipass.4 | |- S = ( .sOLD ` U ) |
|
| 3 | ipass.7 | |- P = ( .iOLD ` U ) |
|
| 4 | 3anrot | |- ( ( A e. X /\ B e. CC /\ C e. X ) <-> ( B e. CC /\ C e. X /\ A e. X ) ) |
|
| 5 | 1 2 3 | dipass | |- ( ( U e. CPreHilOLD /\ ( B e. CC /\ C e. X /\ A e. X ) ) -> ( ( B S C ) P A ) = ( B x. ( C P A ) ) ) |
| 6 | 4 5 | sylan2b | |- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. CC /\ C e. X ) ) -> ( ( B S C ) P A ) = ( B x. ( C P A ) ) ) |
| 7 | 6 | fveq2d | |- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. CC /\ C e. X ) ) -> ( * ` ( ( B S C ) P A ) ) = ( * ` ( B x. ( C P A ) ) ) ) |
| 8 | phnv | |- ( U e. CPreHilOLD -> U e. NrmCVec ) |
|
| 9 | simpl | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. CC /\ C e. X ) ) -> U e. NrmCVec ) |
|
| 10 | 1 2 | nvscl | |- ( ( U e. NrmCVec /\ B e. CC /\ C e. X ) -> ( B S C ) e. X ) |
| 11 | 10 | 3adant3r1 | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. CC /\ C e. X ) ) -> ( B S C ) e. X ) |
| 12 | simpr1 | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. CC /\ C e. X ) ) -> A e. X ) |
|
| 13 | 1 3 | dipcj | |- ( ( U e. NrmCVec /\ ( B S C ) e. X /\ A e. X ) -> ( * ` ( ( B S C ) P A ) ) = ( A P ( B S C ) ) ) |
| 14 | 9 11 12 13 | syl3anc | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. CC /\ C e. X ) ) -> ( * ` ( ( B S C ) P A ) ) = ( A P ( B S C ) ) ) |
| 15 | 8 14 | sylan | |- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. CC /\ C e. X ) ) -> ( * ` ( ( B S C ) P A ) ) = ( A P ( B S C ) ) ) |
| 16 | simpr2 | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. CC /\ C e. X ) ) -> B e. CC ) |
|
| 17 | 1 3 | dipcl | |- ( ( U e. NrmCVec /\ C e. X /\ A e. X ) -> ( C P A ) e. CC ) |
| 18 | 17 | 3com23 | |- ( ( U e. NrmCVec /\ A e. X /\ C e. X ) -> ( C P A ) e. CC ) |
| 19 | 18 | 3adant3r2 | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. CC /\ C e. X ) ) -> ( C P A ) e. CC ) |
| 20 | 16 19 | cjmuld | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. CC /\ C e. X ) ) -> ( * ` ( B x. ( C P A ) ) ) = ( ( * ` B ) x. ( * ` ( C P A ) ) ) ) |
| 21 | 1 3 | dipcj | |- ( ( U e. NrmCVec /\ C e. X /\ A e. X ) -> ( * ` ( C P A ) ) = ( A P C ) ) |
| 22 | 21 | 3com23 | |- ( ( U e. NrmCVec /\ A e. X /\ C e. X ) -> ( * ` ( C P A ) ) = ( A P C ) ) |
| 23 | 22 | 3adant3r2 | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. CC /\ C e. X ) ) -> ( * ` ( C P A ) ) = ( A P C ) ) |
| 24 | 23 | oveq2d | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. CC /\ C e. X ) ) -> ( ( * ` B ) x. ( * ` ( C P A ) ) ) = ( ( * ` B ) x. ( A P C ) ) ) |
| 25 | 20 24 | eqtrd | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. CC /\ C e. X ) ) -> ( * ` ( B x. ( C P A ) ) ) = ( ( * ` B ) x. ( A P C ) ) ) |
| 26 | 8 25 | sylan | |- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. CC /\ C e. X ) ) -> ( * ` ( B x. ( C P A ) ) ) = ( ( * ` B ) x. ( A P C ) ) ) |
| 27 | 7 15 26 | 3eqtr3d | |- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. CC /\ C e. X ) ) -> ( A P ( B S C ) ) = ( ( * ` B ) x. ( A P C ) ) ) |