This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Associative" law for inner product. Conjugate version of dipassr . (Contributed by NM, 23-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipass.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| ipass.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| ipass.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| Assertion | dipassr2 | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝑃 ( ( ∗ ‘ 𝐵 ) 𝑆 𝐶 ) ) = ( 𝐵 · ( 𝐴 𝑃 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipass.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | ipass.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 3 | ipass.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 4 | cjcl | ⊢ ( 𝐵 ∈ ℂ → ( ∗ ‘ 𝐵 ) ∈ ℂ ) | |
| 5 | 1 2 3 | dipassr | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ ( ∗ ‘ 𝐵 ) ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝑃 ( ( ∗ ‘ 𝐵 ) 𝑆 𝐶 ) ) = ( ( ∗ ‘ ( ∗ ‘ 𝐵 ) ) · ( 𝐴 𝑃 𝐶 ) ) ) |
| 6 | 4 5 | syl3anr2 | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝑃 ( ( ∗ ‘ 𝐵 ) 𝑆 𝐶 ) ) = ( ( ∗ ‘ ( ∗ ‘ 𝐵 ) ) · ( 𝐴 𝑃 𝐶 ) ) ) |
| 7 | cjcj | ⊢ ( 𝐵 ∈ ℂ → ( ∗ ‘ ( ∗ ‘ 𝐵 ) ) = 𝐵 ) | |
| 8 | 7 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) → ( ∗ ‘ ( ∗ ‘ 𝐵 ) ) = 𝐵 ) |
| 9 | 8 | adantl | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → ( ∗ ‘ ( ∗ ‘ 𝐵 ) ) = 𝐵 ) |
| 10 | 9 | oveq1d | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → ( ( ∗ ‘ ( ∗ ‘ 𝐵 ) ) · ( 𝐴 𝑃 𝐶 ) ) = ( 𝐵 · ( 𝐴 𝑃 𝐶 ) ) ) |
| 11 | 6 10 | eqtrd | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝑃 ( ( ∗ ‘ 𝐵 ) 𝑆 𝐶 ) ) = ( 𝐵 · ( 𝐴 𝑃 𝐶 ) ) ) |