This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a nonzero complex number raised to an integer power minus one. (Contributed by NM, 25-Dec-2008) (Revised by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expm1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ ( 𝑁 − 1 ) ) = ( ( 𝐴 ↑ 𝑁 ) / 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z | ⊢ 1 ∈ ℤ | |
| 2 | expsub | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℤ ∧ 1 ∈ ℤ ) ) → ( 𝐴 ↑ ( 𝑁 − 1 ) ) = ( ( 𝐴 ↑ 𝑁 ) / ( 𝐴 ↑ 1 ) ) ) | |
| 3 | 1 2 | mpanr2 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ ( 𝑁 − 1 ) ) = ( ( 𝐴 ↑ 𝑁 ) / ( 𝐴 ↑ 1 ) ) ) |
| 4 | 3 | 3impa | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ ( 𝑁 − 1 ) ) = ( ( 𝐴 ↑ 𝑁 ) / ( 𝐴 ↑ 1 ) ) ) |
| 5 | exp1 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 1 ) = 𝐴 ) | |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ 1 ) = 𝐴 ) |
| 7 | 6 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( ( 𝐴 ↑ 𝑁 ) / ( 𝐴 ↑ 1 ) ) = ( ( 𝐴 ↑ 𝑁 ) / 𝐴 ) ) |
| 8 | 4 7 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ ( 𝑁 − 1 ) ) = ( ( 𝐴 ↑ 𝑁 ) / 𝐴 ) ) |