This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cardinality of a nonempty finite set is one greater than the cardinality of the set with one element removed. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 2-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dif1card | |- ( ( A e. Fin /\ X e. A ) -> ( card ` A ) = suc ( card ` ( A \ { X } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diffi | |- ( A e. Fin -> ( A \ { X } ) e. Fin ) |
|
| 2 | isfi | |- ( ( A \ { X } ) e. Fin <-> E. m e. _om ( A \ { X } ) ~~ m ) |
|
| 3 | simp3 | |- ( ( X e. A /\ m e. _om /\ ( A \ { X } ) ~~ m ) -> ( A \ { X } ) ~~ m ) |
|
| 4 | en2sn | |- ( ( X e. A /\ m e. _om ) -> { X } ~~ { m } ) |
|
| 5 | 4 | 3adant3 | |- ( ( X e. A /\ m e. _om /\ ( A \ { X } ) ~~ m ) -> { X } ~~ { m } ) |
| 6 | disjdifr | |- ( ( A \ { X } ) i^i { X } ) = (/) |
|
| 7 | 6 | a1i | |- ( ( X e. A /\ m e. _om /\ ( A \ { X } ) ~~ m ) -> ( ( A \ { X } ) i^i { X } ) = (/) ) |
| 8 | nnord | |- ( m e. _om -> Ord m ) |
|
| 9 | ordirr | |- ( Ord m -> -. m e. m ) |
|
| 10 | 8 9 | syl | |- ( m e. _om -> -. m e. m ) |
| 11 | disjsn | |- ( ( m i^i { m } ) = (/) <-> -. m e. m ) |
|
| 12 | 10 11 | sylibr | |- ( m e. _om -> ( m i^i { m } ) = (/) ) |
| 13 | 12 | 3ad2ant2 | |- ( ( X e. A /\ m e. _om /\ ( A \ { X } ) ~~ m ) -> ( m i^i { m } ) = (/) ) |
| 14 | unen | |- ( ( ( ( A \ { X } ) ~~ m /\ { X } ~~ { m } ) /\ ( ( ( A \ { X } ) i^i { X } ) = (/) /\ ( m i^i { m } ) = (/) ) ) -> ( ( A \ { X } ) u. { X } ) ~~ ( m u. { m } ) ) |
|
| 15 | 3 5 7 13 14 | syl22anc | |- ( ( X e. A /\ m e. _om /\ ( A \ { X } ) ~~ m ) -> ( ( A \ { X } ) u. { X } ) ~~ ( m u. { m } ) ) |
| 16 | difsnid | |- ( X e. A -> ( ( A \ { X } ) u. { X } ) = A ) |
|
| 17 | df-suc | |- suc m = ( m u. { m } ) |
|
| 18 | 17 | eqcomi | |- ( m u. { m } ) = suc m |
| 19 | 18 | a1i | |- ( X e. A -> ( m u. { m } ) = suc m ) |
| 20 | 16 19 | breq12d | |- ( X e. A -> ( ( ( A \ { X } ) u. { X } ) ~~ ( m u. { m } ) <-> A ~~ suc m ) ) |
| 21 | 20 | 3ad2ant1 | |- ( ( X e. A /\ m e. _om /\ ( A \ { X } ) ~~ m ) -> ( ( ( A \ { X } ) u. { X } ) ~~ ( m u. { m } ) <-> A ~~ suc m ) ) |
| 22 | 15 21 | mpbid | |- ( ( X e. A /\ m e. _om /\ ( A \ { X } ) ~~ m ) -> A ~~ suc m ) |
| 23 | peano2 | |- ( m e. _om -> suc m e. _om ) |
|
| 24 | 23 | 3ad2ant2 | |- ( ( X e. A /\ m e. _om /\ ( A \ { X } ) ~~ m ) -> suc m e. _om ) |
| 25 | cardennn | |- ( ( A ~~ suc m /\ suc m e. _om ) -> ( card ` A ) = suc m ) |
|
| 26 | 22 24 25 | syl2anc | |- ( ( X e. A /\ m e. _om /\ ( A \ { X } ) ~~ m ) -> ( card ` A ) = suc m ) |
| 27 | cardennn | |- ( ( ( A \ { X } ) ~~ m /\ m e. _om ) -> ( card ` ( A \ { X } ) ) = m ) |
|
| 28 | 27 | ancoms | |- ( ( m e. _om /\ ( A \ { X } ) ~~ m ) -> ( card ` ( A \ { X } ) ) = m ) |
| 29 | 28 | 3adant1 | |- ( ( X e. A /\ m e. _om /\ ( A \ { X } ) ~~ m ) -> ( card ` ( A \ { X } ) ) = m ) |
| 30 | suceq | |- ( ( card ` ( A \ { X } ) ) = m -> suc ( card ` ( A \ { X } ) ) = suc m ) |
|
| 31 | 29 30 | syl | |- ( ( X e. A /\ m e. _om /\ ( A \ { X } ) ~~ m ) -> suc ( card ` ( A \ { X } ) ) = suc m ) |
| 32 | 26 31 | eqtr4d | |- ( ( X e. A /\ m e. _om /\ ( A \ { X } ) ~~ m ) -> ( card ` A ) = suc ( card ` ( A \ { X } ) ) ) |
| 33 | 32 | 3expib | |- ( X e. A -> ( ( m e. _om /\ ( A \ { X } ) ~~ m ) -> ( card ` A ) = suc ( card ` ( A \ { X } ) ) ) ) |
| 34 | 33 | com12 | |- ( ( m e. _om /\ ( A \ { X } ) ~~ m ) -> ( X e. A -> ( card ` A ) = suc ( card ` ( A \ { X } ) ) ) ) |
| 35 | 34 | rexlimiva | |- ( E. m e. _om ( A \ { X } ) ~~ m -> ( X e. A -> ( card ` A ) = suc ( card ` ( A \ { X } ) ) ) ) |
| 36 | 2 35 | sylbi | |- ( ( A \ { X } ) e. Fin -> ( X e. A -> ( card ` A ) = suc ( card ` ( A \ { X } ) ) ) ) |
| 37 | 1 36 | syl | |- ( A e. Fin -> ( X e. A -> ( card ` A ) = suc ( card ` ( A \ { X } ) ) ) ) |
| 38 | 37 | imp | |- ( ( A e. Fin /\ X e. A ) -> ( card ` A ) = suc ( card ` ( A \ { X } ) ) ) |