This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A potential definition of transitivity for sets. (Contributed by Scott Fenton, 18-Mar-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dftr6.1 | ⊢ 𝐴 ∈ V | |
| Assertion | dftr6 | ⊢ ( Tr 𝐴 ↔ 𝐴 ∈ ( V ∖ ran ( ( E ∘ E ) ∖ E ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftr6.1 | ⊢ 𝐴 ∈ V | |
| 2 | 1 | elrn | ⊢ ( 𝐴 ∈ ran ( ( E ∘ E ) ∖ E ) ↔ ∃ 𝑥 𝑥 ( ( E ∘ E ) ∖ E ) 𝐴 ) |
| 3 | brdif | ⊢ ( 𝑥 ( ( E ∘ E ) ∖ E ) 𝐴 ↔ ( 𝑥 ( E ∘ E ) 𝐴 ∧ ¬ 𝑥 E 𝐴 ) ) | |
| 4 | vex | ⊢ 𝑥 ∈ V | |
| 5 | 4 1 | brco | ⊢ ( 𝑥 ( E ∘ E ) 𝐴 ↔ ∃ 𝑦 ( 𝑥 E 𝑦 ∧ 𝑦 E 𝐴 ) ) |
| 6 | epel | ⊢ ( 𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦 ) | |
| 7 | 1 | epeli | ⊢ ( 𝑦 E 𝐴 ↔ 𝑦 ∈ 𝐴 ) |
| 8 | 6 7 | anbi12i | ⊢ ( ( 𝑥 E 𝑦 ∧ 𝑦 E 𝐴 ) ↔ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) |
| 9 | 8 | exbii | ⊢ ( ∃ 𝑦 ( 𝑥 E 𝑦 ∧ 𝑦 E 𝐴 ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) |
| 10 | 5 9 | bitri | ⊢ ( 𝑥 ( E ∘ E ) 𝐴 ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) |
| 11 | 1 | epeli | ⊢ ( 𝑥 E 𝐴 ↔ 𝑥 ∈ 𝐴 ) |
| 12 | 11 | notbii | ⊢ ( ¬ 𝑥 E 𝐴 ↔ ¬ 𝑥 ∈ 𝐴 ) |
| 13 | 10 12 | anbi12i | ⊢ ( ( 𝑥 ( E ∘ E ) 𝐴 ∧ ¬ 𝑥 E 𝐴 ) ↔ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑥 ∈ 𝐴 ) ) |
| 14 | 19.41v | ⊢ ( ∃ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑥 ∈ 𝐴 ) ↔ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑥 ∈ 𝐴 ) ) | |
| 15 | exanali | ⊢ ( ∃ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑥 ∈ 𝐴 ) ↔ ¬ ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ) | |
| 16 | 14 15 | bitr3i | ⊢ ( ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑥 ∈ 𝐴 ) ↔ ¬ ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ) |
| 17 | 3 13 16 | 3bitri | ⊢ ( 𝑥 ( ( E ∘ E ) ∖ E ) 𝐴 ↔ ¬ ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ) |
| 18 | 17 | exbii | ⊢ ( ∃ 𝑥 𝑥 ( ( E ∘ E ) ∖ E ) 𝐴 ↔ ∃ 𝑥 ¬ ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ) |
| 19 | exnal | ⊢ ( ∃ 𝑥 ¬ ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ↔ ¬ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ) | |
| 20 | 2 18 19 | 3bitri | ⊢ ( 𝐴 ∈ ran ( ( E ∘ E ) ∖ E ) ↔ ¬ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ) |
| 21 | 20 | con2bii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ↔ ¬ 𝐴 ∈ ran ( ( E ∘ E ) ∖ E ) ) |
| 22 | dftr2 | ⊢ ( Tr 𝐴 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) ) | |
| 23 | eldif | ⊢ ( 𝐴 ∈ ( V ∖ ran ( ( E ∘ E ) ∖ E ) ) ↔ ( 𝐴 ∈ V ∧ ¬ 𝐴 ∈ ran ( ( E ∘ E ) ∖ E ) ) ) | |
| 24 | 1 23 | mpbiran | ⊢ ( 𝐴 ∈ ( V ∖ ran ( ( E ∘ E ) ∖ E ) ) ↔ ¬ 𝐴 ∈ ran ( ( E ∘ E ) ∖ E ) ) |
| 25 | 21 22 24 | 3bitr4i | ⊢ ( Tr 𝐴 ↔ 𝐴 ∈ ( V ∖ ran ( ( E ∘ E ) ∖ E ) ) ) |