This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A relation can be expressed as the set of ordered pairs in it. An analogue of dffn5 for relations. (Contributed by Mario Carneiro, 16-Aug-2015) (Revised by Thierry Arnoux, 11-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfrel4.1 | ⊢ Ⅎ 𝑥 𝑅 | |
| dfrel4.2 | ⊢ Ⅎ 𝑦 𝑅 | ||
| Assertion | dfrel4 | ⊢ ( Rel 𝑅 ↔ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 𝑅 𝑦 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrel4.1 | ⊢ Ⅎ 𝑥 𝑅 | |
| 2 | dfrel4.2 | ⊢ Ⅎ 𝑦 𝑅 | |
| 3 | dfrel4v | ⊢ ( Rel 𝑅 ↔ 𝑅 = { 〈 𝑎 , 𝑏 〉 ∣ 𝑎 𝑅 𝑏 } ) | |
| 4 | nfcv | ⊢ Ⅎ 𝑥 𝑎 | |
| 5 | nfcv | ⊢ Ⅎ 𝑥 𝑏 | |
| 6 | 4 1 5 | nfbr | ⊢ Ⅎ 𝑥 𝑎 𝑅 𝑏 |
| 7 | nfcv | ⊢ Ⅎ 𝑦 𝑎 | |
| 8 | nfcv | ⊢ Ⅎ 𝑦 𝑏 | |
| 9 | 7 2 8 | nfbr | ⊢ Ⅎ 𝑦 𝑎 𝑅 𝑏 |
| 10 | nfv | ⊢ Ⅎ 𝑎 𝑥 𝑅 𝑦 | |
| 11 | nfv | ⊢ Ⅎ 𝑏 𝑥 𝑅 𝑦 | |
| 12 | breq12 | ⊢ ( ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) → ( 𝑎 𝑅 𝑏 ↔ 𝑥 𝑅 𝑦 ) ) | |
| 13 | 6 9 10 11 12 | cbvopab | ⊢ { 〈 𝑎 , 𝑏 〉 ∣ 𝑎 𝑅 𝑏 } = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 𝑅 𝑦 } |
| 14 | 13 | eqeq2i | ⊢ ( 𝑅 = { 〈 𝑎 , 𝑏 〉 ∣ 𝑎 𝑅 𝑏 } ↔ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 𝑅 𝑦 } ) |
| 15 | 3 14 | bitri | ⊢ ( Rel 𝑅 ↔ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 𝑅 𝑦 } ) |