This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
dfrel4
Metamath Proof Explorer
Description: A relation can be expressed as the set of ordered pairs in it. An
analogue of dffn5 for relations. (Contributed by Mario Carneiro , 16-Aug-2015) (Revised by Thierry Arnoux , 11-May-2017)
Ref
Expression
Hypotheses
dfrel4.1
⊢ Ⅎ _ x R
dfrel4.2
⊢ Ⅎ _ y R
Assertion
dfrel4
⊢ Rel ⁡ R ↔ R = x y | x R y
Proof
Step
Hyp
Ref
Expression
1
dfrel4.1
⊢ Ⅎ _ x R
2
dfrel4.2
⊢ Ⅎ _ y R
3
dfrel4v
⊢ Rel ⁡ R ↔ R = a b | a R b
4
nfcv
⊢ Ⅎ _ x a
5
nfcv
⊢ Ⅎ _ x b
6
4 1 5
nfbr
⊢ Ⅎ x a R b
7
nfcv
⊢ Ⅎ _ y a
8
nfcv
⊢ Ⅎ _ y b
9
7 2 8
nfbr
⊢ Ⅎ y a R b
10
nfv
⊢ Ⅎ a x R y
11
nfv
⊢ Ⅎ b x R y
12
breq12
⊢ a = x ∧ b = y → a R b ↔ x R y
13
6 9 10 11 12
cbvopab
⊢ a b | a R b = x y | x R y
14
13
eqeq2i
⊢ R = a b | a R b ↔ R = x y | x R y
15
3 14
bitri
⊢ Rel ⁡ R ↔ R = x y | x R y