This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A relation can be expressed as the set of ordered pairs in it. An analogue of dffn5 for relations. (Contributed by Mario Carneiro, 16-Aug-2015) (Revised by Thierry Arnoux, 11-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfrel4.1 | |- F/_ x R |
|
| dfrel4.2 | |- F/_ y R |
||
| Assertion | dfrel4 | |- ( Rel R <-> R = { <. x , y >. | x R y } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrel4.1 | |- F/_ x R |
|
| 2 | dfrel4.2 | |- F/_ y R |
|
| 3 | dfrel4v | |- ( Rel R <-> R = { <. a , b >. | a R b } ) |
|
| 4 | nfcv | |- F/_ x a |
|
| 5 | nfcv | |- F/_ x b |
|
| 6 | 4 1 5 | nfbr | |- F/ x a R b |
| 7 | nfcv | |- F/_ y a |
|
| 8 | nfcv | |- F/_ y b |
|
| 9 | 7 2 8 | nfbr | |- F/ y a R b |
| 10 | nfv | |- F/ a x R y |
|
| 11 | nfv | |- F/ b x R y |
|
| 12 | breq12 | |- ( ( a = x /\ b = y ) -> ( a R b <-> x R y ) ) |
|
| 13 | 6 9 10 11 12 | cbvopab | |- { <. a , b >. | a R b } = { <. x , y >. | x R y } |
| 14 | 13 | eqeq2i | |- ( R = { <. a , b >. | a R b } <-> R = { <. x , y >. | x R y } ) |
| 15 | 3 14 | bitri | |- ( Rel R <-> R = { <. x , y >. | x R y } ) |