This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A quantifier-free definition of _om that does not depend on ax-inf . (Note: label was changed from dfom5 to dfom5b to prevent naming conflict. NM, 12-Feb-2013.) (Contributed by Scott Fenton, 11-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfom5b | ⊢ ω = ( On ∩ ∩ Limits ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑥 ∈ V | |
| 2 | 1 | elint | ⊢ ( 𝑥 ∈ ∩ Limits ↔ ∀ 𝑦 ( 𝑦 ∈ Limits → 𝑥 ∈ 𝑦 ) ) |
| 3 | vex | ⊢ 𝑦 ∈ V | |
| 4 | 3 | ellimits | ⊢ ( 𝑦 ∈ Limits ↔ Lim 𝑦 ) |
| 5 | 4 | imbi1i | ⊢ ( ( 𝑦 ∈ Limits → 𝑥 ∈ 𝑦 ) ↔ ( Lim 𝑦 → 𝑥 ∈ 𝑦 ) ) |
| 6 | 5 | albii | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ Limits → 𝑥 ∈ 𝑦 ) ↔ ∀ 𝑦 ( Lim 𝑦 → 𝑥 ∈ 𝑦 ) ) |
| 7 | 2 6 | bitr2i | ⊢ ( ∀ 𝑦 ( Lim 𝑦 → 𝑥 ∈ 𝑦 ) ↔ 𝑥 ∈ ∩ Limits ) |
| 8 | 7 | anbi2i | ⊢ ( ( 𝑥 ∈ On ∧ ∀ 𝑦 ( Lim 𝑦 → 𝑥 ∈ 𝑦 ) ) ↔ ( 𝑥 ∈ On ∧ 𝑥 ∈ ∩ Limits ) ) |
| 9 | elom | ⊢ ( 𝑥 ∈ ω ↔ ( 𝑥 ∈ On ∧ ∀ 𝑦 ( Lim 𝑦 → 𝑥 ∈ 𝑦 ) ) ) | |
| 10 | elin | ⊢ ( 𝑥 ∈ ( On ∩ ∩ Limits ) ↔ ( 𝑥 ∈ On ∧ 𝑥 ∈ ∩ Limits ) ) | |
| 11 | 8 9 10 | 3bitr4i | ⊢ ( 𝑥 ∈ ω ↔ 𝑥 ∈ ( On ∩ ∩ Limits ) ) |
| 12 | 11 | eqriv | ⊢ ω = ( On ∩ ∩ Limits ) |