This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A quantifier-free definition of _om that does not depend on ax-inf . (Note: label was changed from dfom5 to dfom5b to prevent naming conflict. NM, 12-Feb-2013.) (Contributed by Scott Fenton, 11-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfom5b | |- _om = ( On i^i |^| Limits ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- x e. _V |
|
| 2 | 1 | elint | |- ( x e. |^| Limits <-> A. y ( y e. Limits -> x e. y ) ) |
| 3 | vex | |- y e. _V |
|
| 4 | 3 | ellimits | |- ( y e. Limits <-> Lim y ) |
| 5 | 4 | imbi1i | |- ( ( y e. Limits -> x e. y ) <-> ( Lim y -> x e. y ) ) |
| 6 | 5 | albii | |- ( A. y ( y e. Limits -> x e. y ) <-> A. y ( Lim y -> x e. y ) ) |
| 7 | 2 6 | bitr2i | |- ( A. y ( Lim y -> x e. y ) <-> x e. |^| Limits ) |
| 8 | 7 | anbi2i | |- ( ( x e. On /\ A. y ( Lim y -> x e. y ) ) <-> ( x e. On /\ x e. |^| Limits ) ) |
| 9 | elom | |- ( x e. _om <-> ( x e. On /\ A. y ( Lim y -> x e. y ) ) ) |
|
| 10 | elin | |- ( x e. ( On i^i |^| Limits ) <-> ( x e. On /\ x e. |^| Limits ) ) |
|
| 11 | 8 9 10 | 3bitr4i | |- ( x e. _om <-> x e. ( On i^i |^| Limits ) ) |
| 12 | 11 | eqriv | |- _om = ( On i^i |^| Limits ) |