This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition for subset and composition with identity. (Contributed by Scott Fenton, 13-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sscoid | ⊢ ( 𝐴 ⊆ ( I ∘ 𝐵 ) ↔ ( Rel 𝐴 ∧ 𝐴 ⊆ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco | ⊢ Rel ( I ∘ 𝐵 ) | |
| 2 | relss | ⊢ ( 𝐴 ⊆ ( I ∘ 𝐵 ) → ( Rel ( I ∘ 𝐵 ) → Rel 𝐴 ) ) | |
| 3 | 1 2 | mpi | ⊢ ( 𝐴 ⊆ ( I ∘ 𝐵 ) → Rel 𝐴 ) |
| 4 | elrel | ⊢ ( ( Rel 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∃ 𝑧 𝑥 = 〈 𝑦 , 𝑧 〉 ) | |
| 5 | vex | ⊢ 𝑦 ∈ V | |
| 6 | vex | ⊢ 𝑧 ∈ V | |
| 7 | 5 6 | brco | ⊢ ( 𝑦 ( I ∘ 𝐵 ) 𝑧 ↔ ∃ 𝑥 ( 𝑦 𝐵 𝑥 ∧ 𝑥 I 𝑧 ) ) |
| 8 | 6 | ideq | ⊢ ( 𝑥 I 𝑧 ↔ 𝑥 = 𝑧 ) |
| 9 | 8 | anbi1ci | ⊢ ( ( 𝑦 𝐵 𝑥 ∧ 𝑥 I 𝑧 ) ↔ ( 𝑥 = 𝑧 ∧ 𝑦 𝐵 𝑥 ) ) |
| 10 | 9 | exbii | ⊢ ( ∃ 𝑥 ( 𝑦 𝐵 𝑥 ∧ 𝑥 I 𝑧 ) ↔ ∃ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑦 𝐵 𝑥 ) ) |
| 11 | breq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝑦 𝐵 𝑥 ↔ 𝑦 𝐵 𝑧 ) ) | |
| 12 | 11 | equsexvw | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑦 𝐵 𝑥 ) ↔ 𝑦 𝐵 𝑧 ) |
| 13 | 7 10 12 | 3bitri | ⊢ ( 𝑦 ( I ∘ 𝐵 ) 𝑧 ↔ 𝑦 𝐵 𝑧 ) |
| 14 | 13 | a1i | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝑦 ( I ∘ 𝐵 ) 𝑧 ↔ 𝑦 𝐵 𝑧 ) ) |
| 15 | eleq1 | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝑥 ∈ ( I ∘ 𝐵 ) ↔ 〈 𝑦 , 𝑧 〉 ∈ ( I ∘ 𝐵 ) ) ) | |
| 16 | df-br | ⊢ ( 𝑦 ( I ∘ 𝐵 ) 𝑧 ↔ 〈 𝑦 , 𝑧 〉 ∈ ( I ∘ 𝐵 ) ) | |
| 17 | 15 16 | bitr4di | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝑥 ∈ ( I ∘ 𝐵 ) ↔ 𝑦 ( I ∘ 𝐵 ) 𝑧 ) ) |
| 18 | eleq1 | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝑥 ∈ 𝐵 ↔ 〈 𝑦 , 𝑧 〉 ∈ 𝐵 ) ) | |
| 19 | df-br | ⊢ ( 𝑦 𝐵 𝑧 ↔ 〈 𝑦 , 𝑧 〉 ∈ 𝐵 ) | |
| 20 | 18 19 | bitr4di | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝑥 ∈ 𝐵 ↔ 𝑦 𝐵 𝑧 ) ) |
| 21 | 14 17 20 | 3bitr4d | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝑥 ∈ ( I ∘ 𝐵 ) ↔ 𝑥 ∈ 𝐵 ) ) |
| 22 | 21 | exlimivv | ⊢ ( ∃ 𝑦 ∃ 𝑧 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝑥 ∈ ( I ∘ 𝐵 ) ↔ 𝑥 ∈ 𝐵 ) ) |
| 23 | 4 22 | syl | ⊢ ( ( Rel 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ ( I ∘ 𝐵 ) ↔ 𝑥 ∈ 𝐵 ) ) |
| 24 | 23 | pm5.74da | ⊢ ( Rel 𝐴 → ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( I ∘ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) ) |
| 25 | 24 | albidv | ⊢ ( Rel 𝐴 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( I ∘ 𝐵 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) ) |
| 26 | df-ss | ⊢ ( 𝐴 ⊆ ( I ∘ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( I ∘ 𝐵 ) ) ) | |
| 27 | df-ss | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
| 28 | 25 26 27 | 3bitr4g | ⊢ ( Rel 𝐴 → ( 𝐴 ⊆ ( I ∘ 𝐵 ) ↔ 𝐴 ⊆ 𝐵 ) ) |
| 29 | 3 28 | biadanii | ⊢ ( 𝐴 ⊆ ( I ∘ 𝐵 ) ↔ ( Rel 𝐴 ∧ 𝐴 ⊆ 𝐵 ) ) |