This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the set of positive integers. Definition of positive integers in Apostol p. 22. (Contributed by NM, 3-Jul-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfnn3 | ⊢ ℕ = ∩ { 𝑥 ∣ ( 𝑥 ⊆ ℝ ∧ 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 | ⊢ ( 𝑥 = 𝑧 → ( 1 ∈ 𝑥 ↔ 1 ∈ 𝑧 ) ) | |
| 2 | eleq2 | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑦 + 1 ) ∈ 𝑥 ↔ ( 𝑦 + 1 ) ∈ 𝑧 ) ) | |
| 3 | 2 | raleqbi1dv | ⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ↔ ∀ 𝑦 ∈ 𝑧 ( 𝑦 + 1 ) ∈ 𝑧 ) ) |
| 4 | 1 3 | anbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) ↔ ( 1 ∈ 𝑧 ∧ ∀ 𝑦 ∈ 𝑧 ( 𝑦 + 1 ) ∈ 𝑧 ) ) ) |
| 5 | dfnn2 | ⊢ ℕ = ∩ { 𝑧 ∣ ( 1 ∈ 𝑧 ∧ ∀ 𝑦 ∈ 𝑧 ( 𝑦 + 1 ) ∈ 𝑧 ) } | |
| 6 | 5 | eqeq2i | ⊢ ( 𝑥 = ℕ ↔ 𝑥 = ∩ { 𝑧 ∣ ( 1 ∈ 𝑧 ∧ ∀ 𝑦 ∈ 𝑧 ( 𝑦 + 1 ) ∈ 𝑧 ) } ) |
| 7 | eleq2 | ⊢ ( 𝑥 = ℕ → ( 1 ∈ 𝑥 ↔ 1 ∈ ℕ ) ) | |
| 8 | eleq2 | ⊢ ( 𝑥 = ℕ → ( ( 𝑦 + 1 ) ∈ 𝑥 ↔ ( 𝑦 + 1 ) ∈ ℕ ) ) | |
| 9 | 8 | raleqbi1dv | ⊢ ( 𝑥 = ℕ → ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ↔ ∀ 𝑦 ∈ ℕ ( 𝑦 + 1 ) ∈ ℕ ) ) |
| 10 | 7 9 | anbi12d | ⊢ ( 𝑥 = ℕ → ( ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) ↔ ( 1 ∈ ℕ ∧ ∀ 𝑦 ∈ ℕ ( 𝑦 + 1 ) ∈ ℕ ) ) ) |
| 11 | 6 10 | sylbir | ⊢ ( 𝑥 = ∩ { 𝑧 ∣ ( 1 ∈ 𝑧 ∧ ∀ 𝑦 ∈ 𝑧 ( 𝑦 + 1 ) ∈ 𝑧 ) } → ( ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) ↔ ( 1 ∈ ℕ ∧ ∀ 𝑦 ∈ ℕ ( 𝑦 + 1 ) ∈ ℕ ) ) ) |
| 12 | nnssre | ⊢ ℕ ⊆ ℝ | |
| 13 | 5 12 | eqsstrri | ⊢ ∩ { 𝑧 ∣ ( 1 ∈ 𝑧 ∧ ∀ 𝑦 ∈ 𝑧 ( 𝑦 + 1 ) ∈ 𝑧 ) } ⊆ ℝ |
| 14 | 1nn | ⊢ 1 ∈ ℕ | |
| 15 | peano2nn | ⊢ ( 𝑦 ∈ ℕ → ( 𝑦 + 1 ) ∈ ℕ ) | |
| 16 | 15 | rgen | ⊢ ∀ 𝑦 ∈ ℕ ( 𝑦 + 1 ) ∈ ℕ |
| 17 | 14 16 | pm3.2i | ⊢ ( 1 ∈ ℕ ∧ ∀ 𝑦 ∈ ℕ ( 𝑦 + 1 ) ∈ ℕ ) |
| 18 | 13 17 | pm3.2i | ⊢ ( ∩ { 𝑧 ∣ ( 1 ∈ 𝑧 ∧ ∀ 𝑦 ∈ 𝑧 ( 𝑦 + 1 ) ∈ 𝑧 ) } ⊆ ℝ ∧ ( 1 ∈ ℕ ∧ ∀ 𝑦 ∈ ℕ ( 𝑦 + 1 ) ∈ ℕ ) ) |
| 19 | 4 11 18 | intabs | ⊢ ∩ { 𝑥 ∣ ( 𝑥 ⊆ ℝ ∧ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) ) } = ∩ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } |
| 20 | 3anass | ⊢ ( ( 𝑥 ⊆ ℝ ∧ 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) ↔ ( 𝑥 ⊆ ℝ ∧ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) ) ) | |
| 21 | 20 | abbii | ⊢ { 𝑥 ∣ ( 𝑥 ⊆ ℝ ∧ 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } = { 𝑥 ∣ ( 𝑥 ⊆ ℝ ∧ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) ) } |
| 22 | 21 | inteqi | ⊢ ∩ { 𝑥 ∣ ( 𝑥 ⊆ ℝ ∧ 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } = ∩ { 𝑥 ∣ ( 𝑥 ⊆ ℝ ∧ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) ) } |
| 23 | dfnn2 | ⊢ ℕ = ∩ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } | |
| 24 | 19 22 23 | 3eqtr4ri | ⊢ ℕ = ∩ { 𝑥 ∣ ( 𝑥 ⊆ ℝ ∧ 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } |