This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition for the maps-to notation df-mpt . (Contributed by Mario Carneiro, 30-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfmpt3 | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × { 𝐵 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpt | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } | |
| 2 | velsn | ⊢ ( 𝑦 ∈ { 𝐵 } ↔ 𝑦 = 𝐵 ) | |
| 3 | 2 | anbi2i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ { 𝐵 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ) |
| 4 | 3 | anbi2i | ⊢ ( ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ { 𝐵 } ) ) ↔ ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ) ) |
| 5 | 4 | 2exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ { 𝐵 } ) ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ) ) |
| 6 | eliunxp | ⊢ ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × { 𝐵 } ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ { 𝐵 } ) ) ) | |
| 7 | elopab | ⊢ ( 𝑧 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ) ) | |
| 8 | 5 6 7 | 3bitr4i | ⊢ ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × { 𝐵 } ) ↔ 𝑧 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } ) |
| 9 | 8 | eqriv | ⊢ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × { 𝐵 } ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } |
| 10 | 1 9 | eqtr4i | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × { 𝐵 } ) |