This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition for the maps-to notation df-mpt . (Contributed by Mario Carneiro, 30-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfmpt3 | |- ( x e. A |-> B ) = U_ x e. A ( { x } X. { B } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpt | |- ( x e. A |-> B ) = { <. x , y >. | ( x e. A /\ y = B ) } |
|
| 2 | velsn | |- ( y e. { B } <-> y = B ) |
|
| 3 | 2 | anbi2i | |- ( ( x e. A /\ y e. { B } ) <-> ( x e. A /\ y = B ) ) |
| 4 | 3 | anbi2i | |- ( ( z = <. x , y >. /\ ( x e. A /\ y e. { B } ) ) <-> ( z = <. x , y >. /\ ( x e. A /\ y = B ) ) ) |
| 5 | 4 | 2exbii | |- ( E. x E. y ( z = <. x , y >. /\ ( x e. A /\ y e. { B } ) ) <-> E. x E. y ( z = <. x , y >. /\ ( x e. A /\ y = B ) ) ) |
| 6 | eliunxp | |- ( z e. U_ x e. A ( { x } X. { B } ) <-> E. x E. y ( z = <. x , y >. /\ ( x e. A /\ y e. { B } ) ) ) |
|
| 7 | elopab | |- ( z e. { <. x , y >. | ( x e. A /\ y = B ) } <-> E. x E. y ( z = <. x , y >. /\ ( x e. A /\ y = B ) ) ) |
|
| 8 | 5 6 7 | 3bitr4i | |- ( z e. U_ x e. A ( { x } X. { B } ) <-> z e. { <. x , y >. | ( x e. A /\ y = B ) } ) |
| 9 | 8 | eqriv | |- U_ x e. A ( { x } X. { B } ) = { <. x , y >. | ( x e. A /\ y = B ) } |
| 10 | 1 9 | eqtr4i | |- ( x e. A |-> B ) = U_ x e. A ( { x } X. { B } ) |