This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the intersection of a class. Definition 7.35 of TakeutiZaring p. 44. For example, |^| { { 1 , 3 } , { 1 , 8 } } = { 1 } . Compare this with the intersection of two classes, df-in . (Contributed by NM, 18-Aug-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-int | ⊢ ∩ 𝐴 = { 𝑥 ∣ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | ⊢ 𝐴 | |
| 1 | 0 | cint | ⊢ ∩ 𝐴 |
| 2 | vx | ⊢ 𝑥 | |
| 3 | vy | ⊢ 𝑦 | |
| 4 | 3 | cv | ⊢ 𝑦 |
| 5 | 4 0 | wcel | ⊢ 𝑦 ∈ 𝐴 |
| 6 | 2 | cv | ⊢ 𝑥 |
| 7 | 6 4 | wcel | ⊢ 𝑥 ∈ 𝑦 |
| 8 | 5 7 | wi | ⊢ ( 𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦 ) |
| 9 | 8 3 | wal | ⊢ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦 ) |
| 10 | 9 2 | cab | ⊢ { 𝑥 ∣ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦 ) } |
| 11 | 1 10 | wceq | ⊢ ∩ 𝐴 = { 𝑥 ∣ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦 ) } |