This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class abstraction defined by a formula not containing the abstraction variable is either the empty set or the universal class. (Contributed by Mario Carneiro, 29-Aug-2013) (Revised by BJ, 22-Mar-2020) Reduce axiom usage. (Revised by GG, 30-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ab0orv | ⊢ ( { 𝑥 ∣ 𝜑 } = V ∨ { 𝑥 ∣ 𝜑 } = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | nf3 | ⊢ ( Ⅎ 𝑦 𝜑 ↔ ( ∀ 𝑦 𝜑 ∨ ∀ 𝑦 ¬ 𝜑 ) ) | |
| 3 | 1 2 | mpbi | ⊢ ( ∀ 𝑦 𝜑 ∨ ∀ 𝑦 ¬ 𝜑 ) |
| 4 | biidd | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜑 ) ) | |
| 5 | 4 | eqabcbw | ⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ ⊤ } ↔ ∀ 𝑦 ( 𝜑 ↔ 𝑦 ∈ { 𝑥 ∣ ⊤ } ) ) |
| 6 | dfv2 | ⊢ V = { 𝑥 ∣ ⊤ } | |
| 7 | 6 | eqeq2i | ⊢ ( { 𝑥 ∣ 𝜑 } = V ↔ { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ ⊤ } ) |
| 8 | vextru | ⊢ 𝑦 ∈ { 𝑥 ∣ ⊤ } | |
| 9 | 8 | tbt | ⊢ ( 𝜑 ↔ ( 𝜑 ↔ 𝑦 ∈ { 𝑥 ∣ ⊤ } ) ) |
| 10 | 9 | albii | ⊢ ( ∀ 𝑦 𝜑 ↔ ∀ 𝑦 ( 𝜑 ↔ 𝑦 ∈ { 𝑥 ∣ ⊤ } ) ) |
| 11 | 5 7 10 | 3bitr4i | ⊢ ( { 𝑥 ∣ 𝜑 } = V ↔ ∀ 𝑦 𝜑 ) |
| 12 | 4 | ab0w | ⊢ ( { 𝑥 ∣ 𝜑 } = ∅ ↔ ∀ 𝑦 ¬ 𝜑 ) |
| 13 | 11 12 | orbi12i | ⊢ ( ( { 𝑥 ∣ 𝜑 } = V ∨ { 𝑥 ∣ 𝜑 } = ∅ ) ↔ ( ∀ 𝑦 𝜑 ∨ ∀ 𝑦 ¬ 𝜑 ) ) |
| 14 | 3 13 | mpbir | ⊢ ( { 𝑥 ∣ 𝜑 } = V ∨ { 𝑥 ∣ 𝜑 } = ∅ ) |