This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The previous definition of function value, from before the iota operator was introduced. Although based on the idea embodied by Definition 10.2 of Quine p. 65 (see args ), this definition apparently does not appear in the literature. (Contributed by NM, 1-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffv4 | ⊢ ( 𝐹 ‘ 𝐴 ) = ∪ { 𝑥 ∣ ( 𝐹 “ { 𝐴 } ) = { 𝑥 } } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffv3 | ⊢ ( 𝐹 ‘ 𝐴 ) = ( ℩ 𝑦 𝑦 ∈ ( 𝐹 “ { 𝐴 } ) ) | |
| 2 | df-iota | ⊢ ( ℩ 𝑦 𝑦 ∈ ( 𝐹 “ { 𝐴 } ) ) = ∪ { 𝑥 ∣ { 𝑦 ∣ 𝑦 ∈ ( 𝐹 “ { 𝐴 } ) } = { 𝑥 } } | |
| 3 | abid2 | ⊢ { 𝑦 ∣ 𝑦 ∈ ( 𝐹 “ { 𝐴 } ) } = ( 𝐹 “ { 𝐴 } ) | |
| 4 | 3 | eqeq1i | ⊢ ( { 𝑦 ∣ 𝑦 ∈ ( 𝐹 “ { 𝐴 } ) } = { 𝑥 } ↔ ( 𝐹 “ { 𝐴 } ) = { 𝑥 } ) |
| 5 | 4 | abbii | ⊢ { 𝑥 ∣ { 𝑦 ∣ 𝑦 ∈ ( 𝐹 “ { 𝐴 } ) } = { 𝑥 } } = { 𝑥 ∣ ( 𝐹 “ { 𝐴 } ) = { 𝑥 } } |
| 6 | 5 | unieqi | ⊢ ∪ { 𝑥 ∣ { 𝑦 ∣ 𝑦 ∈ ( 𝐹 “ { 𝐴 } ) } = { 𝑥 } } = ∪ { 𝑥 ∣ ( 𝐹 “ { 𝐴 } ) = { 𝑥 } } |
| 7 | 1 2 6 | 3eqtri | ⊢ ( 𝐹 ‘ 𝐴 ) = ∪ { 𝑥 ∣ ( 𝐹 “ { 𝐴 } ) = { 𝑥 } } |